From 2910c57305e3873d48828aebaf8610315760afb7 Mon Sep 17 00:00:00 2001 From: alex8642 Date: Sat, 26 Oct 2024 15:59:56 -0400 Subject: [PATCH] test --- 01_materials/labs/01_setup.ipynb | 20 +- 01_materials/labs/02_data_engineering.ipynb | 4274 +- 01_materials/labs/03a_sampling.ipynb | 355 +- 01_materials/labs/03b_pipeline.ipynb | 2419 +- 02_activities/assignments/assignment_1.ipynb | 224404 +++++++++++++++- 5 files changed, 231361 insertions(+), 111 deletions(-) diff --git a/01_materials/labs/01_setup.ipynb b/01_materials/labs/01_setup.ipynb index 6b0966a70..b77088901 100644 --- a/01_materials/labs/01_setup.ipynb +++ b/01_materials/labs/01_setup.ipynb @@ -302,7 +302,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -322,9 +322,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-23 21:11:17,843, 530896887.py, 3, INFO, Hello world!\n" + ] + } + ], "source": [ "from logger import get_logger\n", "_logs = get_logger(__name__)\n", @@ -425,7 +433,7 @@ ], "metadata": { "kernelspec": { - "display_name": "env", + "display_name": "dsi_participant", "language": "python", "name": "python3" }, @@ -439,7 +447,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/01_materials/labs/02_data_engineering.ipynb b/01_materials/labs/02_data_engineering.ipynb index 2d3205c27..879dd5de5 100644 --- a/01_materials/labs/02_data_engineering.ipynb +++ b/01_materials/labs/02_data_engineering.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -129,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -152,9 +152,130 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing JCI\n", + "Downloaded (2558, 9).\n", + "Processing BSX\n", + "Downloaded (2558, 9).\n", + "Processing LIN\n", + "Downloaded (2558, 9).\n", + "Processing DOW\n", + "Downloaded (1226, 9).\n", + "Processing CVX\n", + "Downloaded (2558, 9).\n", + "Processing KHC\n", + "Downloaded (2159, 9).\n", + "Processing RL\n", + "Downloaded (2558, 9).\n", + "Processing ED\n", + "Downloaded (2558, 9).\n", + "Processing BX\n", + "Downloaded (2558, 9).\n", + "Processing IBM\n", + "Downloaded (2558, 9).\n", + "Processing A\n", + "Downloaded (2558, 9).\n", + "Processing FIS\n", + "Downloaded (2558, 9).\n", + "Processing MAS\n", + "Downloaded (2558, 9).\n", + "Processing CPB\n", + "Downloaded (2558, 9).\n", + "Processing PNW\n", + "Downloaded (2558, 9).\n", + "Processing QCOM\n", + "Downloaded (2558, 9).\n", + "Processing YUM\n", + "Downloaded (2558, 9).\n", + "Processing AWK\n", + "Downloaded (2558, 9).\n", + "Processing MU\n", + "Downloaded (2558, 9).\n", + "Processing RCL\n", + "Downloaded (2558, 9).\n", + "Processing WTW\n", + "Downloaded (2558, 9).\n", + "Processing GWW\n", + "Downloaded (2558, 9).\n", + "Processing HAS\n", + "Downloaded (2558, 9).\n", + "Processing PEAK\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "$PEAK: possibly delisted; No timezone found\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No data for PEAK\n", + "Processing BR\n", + "Downloaded (2558, 9).\n", + "Processing VLO\n", + "Downloaded (2558, 9).\n", + "Processing VICI\n", + "Downloaded (1530, 9).\n", + "Processing RHI\n", + "Downloaded (2558, 9).\n", + "Processing CRL\n", + "Downloaded (2558, 9).\n", + "Processing NEM\n", + "Downloaded (2558, 9).\n", + "Processing LYB\n", + "Downloaded (2558, 9).\n", + "Processing GS\n", + "Downloaded (2558, 9).\n", + "Processing V\n", + "Downloaded (2558, 9).\n", + "Processing EPAM\n", + "Downloaded (2558, 9).\n", + "Processing ABT\n", + "Downloaded (2558, 9).\n", + "Processing NFLX\n", + "Downloaded (2558, 9).\n", + "Processing KVUE\n", + "Downloaded (187, 9).\n", + "Processing BKNG\n", + "Downloaded (2558, 9).\n", + "Processing IT\n", + "Downloaded (2558, 9).\n", + "Processing BBY\n", + "Downloaded (2558, 9).\n", + "Processing NUE\n", + "Downloaded (2558, 9).\n", + "Processing CBRE\n", + "Downloaded (2558, 9).\n", + "Processing WDC\n", + "Downloaded (2558, 9).\n", + "Processing EXPE\n", + "Downloaded (2558, 9).\n", + "Processing AMGN\n", + "Downloaded (2558, 9).\n", + "Processing BRO\n", + "Downloaded (2558, 9).\n", + "Processing MMM\n", + "Downloaded (2558, 9).\n", + "Processing ABNB\n", + "Downloaded (789, 9).\n", + "Processing MDT\n", + "Downloaded (2558, 9).\n", + "Processing AMZN\n", + "Downloaded (2558, 9).\n", + "Final shape (118443, 9).\n" + ] + } + ], "source": [ "# List to hold final results\n", "px_list = list()\n", @@ -221,7 +342,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -239,7 +360,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +369,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -259,9 +380,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing to dt ((118443, 9))csv took 0.7448451519012451 seconds.\n", + "Csv file size 14.036881 MB\n" + ] + } + ], "source": [ "start = time.time()\n", "px_dt.to_csv(stock_path, index = False)\n", @@ -286,18 +416,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1669/676544213.py:1: DeprecationWarning: The current Dask DataFrame implementation is deprecated. \n", + "In a future release, Dask DataFrame will use new implementation that\n", + "contains several improvements including a logical query planning.\n", + "The user-facing DataFrame API will remain unchanged.\n", + "\n", + "The new implementation is already available and can be enabled by\n", + "installing the dask-expr library:\n", + "\n", + " $ pip install dask-expr\n", + "\n", + "and turning the query planning option on:\n", + "\n", + " >>> import dask\n", + " >>> dask.config.set({'dataframe.query-planning': True})\n", + " >>> import dask.dataframe as dd\n", + "\n", + "API documentation for the new implementation is available at\n", + "https://docs.dask.org/en/stable/dask-expr-api.html\n", + "\n", + "Any feedback can be reported on the Dask issue tracker\n", + "https://github.com/dask/dask/issues \n", + "\n", + " import dask.dataframe as dd\n" + ] + } + ], "source": [ "import dask.dataframe as dd" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Writing dd ((118443, 9)) to parquet took 0.6877284049987793 seconds.\n", + "Parquet file size 5.565733 MB\n" + ] + } + ], "source": [ "px_dd = dd.from_pandas(px_dt, npartitions = len(tickers))\n", "parquet_path = os.path.join(temp, \"stock_px.parquet\")\n", @@ -352,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -365,7 +534,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -410,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -435,7 +604,19 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1669/3091835559.py:2: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .apply(func)\n", + " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .apply(func, meta=('x', 'f8')) for series result\n", + " dd_rets = (dd_px.groupby('ticker', group_keys=False).apply(\n" + ] + } + ], "source": [ "import numpy as np\n", "dd_rets = (dd_px.groupby('ticker', group_keys=False).apply(\n", @@ -458,9 +639,158 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
Dask DataFrame Structure:
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateOpenHighLowCloseVolumeDividendsStock SplitsyearClose_lag_1returnspositive_return
npartitions=49
Adatetime64[ns, America/New_York]float64float64float64float64int64float64float64int32float64float64int64
ABNB....................................
.......................................
YUM....................................
YUM....................................
\n", + "
\n", + "
Dask Name: assign, 18 graph layers
" + ], + "text/plain": [ + "Dask DataFrame Structure:\n", + " Date Open High Low Close Volume Dividends Stock Splits year Close_lag_1 returns positive_return\n", + "npartitions=49 \n", + "A datetime64[ns, America/New_York] float64 float64 float64 float64 int64 float64 float64 int32 float64 float64 int64\n", + "ABNB ... ... ... ... ... ... ... ... ... ... ... ...\n", + "... ... ... ... ... ... ... ... ... ... ... ... ...\n", + "YUM ... ... ... ... ... ... ... ... ... ... ... ...\n", + "YUM ... ... ... ... ... ... ... ... ... ... ... ...\n", + "Dask Name: assign, 18 graph layers" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "dd_rets" ] @@ -475,9 +805,281 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateOpenHighLowCloseVolumeDividendsStock SplitsyearClose_lag_1returnspositive_return
ticker
A2013-12-02 00:00:00-05:0034.87548335.00593034.64067534.70589820399620.00.02013NaNNaN0
A2013-12-03 00:00:00-05:0034.51673234.67979534.28192434.52325434627060.00.0201334.705898-0.0052630
A2013-12-04 00:00:00-05:0034.46456035.11028334.38629334.94722033772880.00.0201334.5232540.0122811
A2013-12-05 00:00:00-05:0034.79720235.09071134.64718734.89503925309390.00.0201334.947220-0.0014930
A2013-12-06 00:00:00-05:0035.06463635.82775835.06463635.76253542685130.00.0201334.8950390.0248601
.......................................
YUM2024-01-25 00:00:00-05:00127.913548128.386458126.642582128.29779118717000.00.02024127.5293050.0060261
YUM2024-01-26 00:00:00-05:00128.002213128.760851126.770665127.18446411570000.00.02024128.297791-0.0086780
YUM2024-01-29 00:00:00-05:00127.194317128.622910126.396261128.62291014821000.00.02024127.1844640.0113101
YUM2024-01-30 00:00:00-05:00128.435707129.283013127.667222128.69186414215000.00.02024128.6229100.0005361
YUM2024-01-31 00:00:00-05:00129.509619130.031795127.351944127.57856021542000.00.02024128.691864-0.0086510
\n", + "

118443 rows × 12 columns

\n", + "
" + ], + "text/plain": [ + " Date Open High Low \\\n", + "ticker \n", + "A 2013-12-02 00:00:00-05:00 34.875483 35.005930 34.640675 \n", + "A 2013-12-03 00:00:00-05:00 34.516732 34.679795 34.281924 \n", + "A 2013-12-04 00:00:00-05:00 34.464560 35.110283 34.386293 \n", + "A 2013-12-05 00:00:00-05:00 34.797202 35.090711 34.647187 \n", + "A 2013-12-06 00:00:00-05:00 35.064636 35.827758 35.064636 \n", + "... ... ... ... ... \n", + "YUM 2024-01-25 00:00:00-05:00 127.913548 128.386458 126.642582 \n", + "YUM 2024-01-26 00:00:00-05:00 128.002213 128.760851 126.770665 \n", + "YUM 2024-01-29 00:00:00-05:00 127.194317 128.622910 126.396261 \n", + "YUM 2024-01-30 00:00:00-05:00 128.435707 129.283013 127.667222 \n", + "YUM 2024-01-31 00:00:00-05:00 129.509619 130.031795 127.351944 \n", + "\n", + " Close Volume Dividends Stock Splits year Close_lag_1 \\\n", + "ticker \n", + "A 34.705898 2039962 0.0 0.0 2013 NaN \n", + "A 34.523254 3462706 0.0 0.0 2013 34.705898 \n", + "A 34.947220 3377288 0.0 0.0 2013 34.523254 \n", + "A 34.895039 2530939 0.0 0.0 2013 34.947220 \n", + "A 35.762535 4268513 0.0 0.0 2013 34.895039 \n", + "... ... ... ... ... ... ... \n", + "YUM 128.297791 1871700 0.0 0.0 2024 127.529305 \n", + "YUM 127.184464 1157000 0.0 0.0 2024 128.297791 \n", + "YUM 128.622910 1482100 0.0 0.0 2024 127.184464 \n", + "YUM 128.691864 1421500 0.0 0.0 2024 128.622910 \n", + "YUM 127.578560 2154200 0.0 0.0 2024 128.691864 \n", + "\n", + " returns positive_return \n", + "ticker \n", + "A NaN 0 \n", + "A -0.005263 0 \n", + "A 0.012281 1 \n", + "A -0.001493 0 \n", + "A 0.024860 1 \n", + "... ... ... \n", + "YUM 0.006026 1 \n", + "YUM -0.008678 0 \n", + "YUM 0.011310 1 \n", + "YUM 0.000536 1 \n", + "YUM -0.008651 0 \n", + "\n", + "[118443 rows x 12 columns]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "dd_rets.compute()" ] @@ -495,7 +1097,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -507,7 +1109,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -561,7 +1163,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -582,7 +1184,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -592,9 +1194,3586 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-23 21:12:13,623, data_manager.py, 43, INFO, Getting price data for all tickers.\n", + "2024-10-23 21:12:13,623, data_manager.py, 43, INFO, Getting price data for all tickers.\n", + "2024-10-23 21:12:13,628, data_manager.py, 52, INFO, Getting tickers from ../../05_src/data/tickers/sp500_wiki.csv\n", + "2024-10-23 21:12:13,628, data_manager.py, 52, INFO, Getting tickers from ../../05_src/data/tickers/sp500_wiki.csv\n", + "2024-10-23 21:12:13,632, data_manager.py, 58, INFO, Processing all tickers\n", + "2024-10-23 21:12:13,632, data_manager.py, 58, INFO, Processing all tickers\n", + "2024-10-23 21:12:13,634, data_manager.py, 73, INFO, Processing ticker MMM\n", + "2024-10-23 21:12:13,634, data_manager.py, 73, INFO, Processing ticker MMM\n", + "2024-10-23 21:12:13,635, data_manager.py, 108, INFO, Getting stock price data for MMM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:13,635, data_manager.py, 108, INFO, Getting stock price data for MMM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:14,036, data_manager.py, 82, INFO, Saving data for MMM by year\n", + "2024-10-23 21:12:14,036, data_manager.py, 82, INFO, Saving data for MMM by year\n", + "2024-10-23 21:12:15,498, data_manager.py, 73, INFO, Processing ticker AOS\n", + "2024-10-23 21:12:15,498, data_manager.py, 73, INFO, Processing ticker AOS\n", + "2024-10-23 21:12:15,501, data_manager.py, 108, INFO, Getting stock price data for AOS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:15,501, data_manager.py, 108, INFO, Getting stock price data for AOS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:15,761, data_manager.py, 82, INFO, Saving data for AOS by year\n", + "2024-10-23 21:12:15,761, data_manager.py, 82, INFO, Saving data for AOS by year\n", + "2024-10-23 21:12:17,216, data_manager.py, 73, INFO, Processing ticker ABT\n", + "2024-10-23 21:12:17,216, data_manager.py, 73, INFO, Processing ticker ABT\n", + "2024-10-23 21:12:17,219, data_manager.py, 108, INFO, Getting stock price data for ABT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:17,219, data_manager.py, 108, INFO, Getting stock price data for ABT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:17,599, data_manager.py, 82, INFO, Saving data for ABT by year\n", + "2024-10-23 21:12:17,599, data_manager.py, 82, INFO, Saving data for ABT by year\n", + "2024-10-23 21:12:18,946, data_manager.py, 73, INFO, Processing ticker ABBV\n", + "2024-10-23 21:12:18,946, data_manager.py, 73, INFO, Processing ticker ABBV\n", + "2024-10-23 21:12:18,947, data_manager.py, 108, INFO, Getting stock price data for ABBV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:18,947, data_manager.py, 108, INFO, Getting stock price data for ABBV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:19,176, data_manager.py, 82, INFO, Saving data for ABBV by year\n", + "2024-10-23 21:12:19,176, data_manager.py, 82, INFO, Saving data for ABBV by year\n", + "2024-10-23 21:12:19,797, data_manager.py, 73, INFO, Processing ticker ACN\n", + "2024-10-23 21:12:19,797, data_manager.py, 73, INFO, Processing ticker ACN\n", + "2024-10-23 21:12:19,799, data_manager.py, 108, INFO, Getting stock price data for ACN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:19,799, data_manager.py, 108, INFO, Getting stock price data for ACN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:20,144, data_manager.py, 82, INFO, Saving data for ACN by year\n", + "2024-10-23 21:12:20,144, data_manager.py, 82, INFO, Saving data for ACN by year\n", + "2024-10-23 21:12:21,640, data_manager.py, 73, INFO, Processing ticker ADBE\n", + "2024-10-23 21:12:21,640, data_manager.py, 73, INFO, Processing ticker ADBE\n", + "2024-10-23 21:12:21,642, data_manager.py, 108, INFO, Getting stock price data for ADBE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:21,642, data_manager.py, 108, INFO, Getting stock price data for ADBE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:21,965, data_manager.py, 82, INFO, Saving data for ADBE by year\n", + "2024-10-23 21:12:21,965, data_manager.py, 82, INFO, Saving data for ADBE by year\n", + "2024-10-23 21:12:23,467, data_manager.py, 73, INFO, Processing ticker AMD\n", + "2024-10-23 21:12:23,467, data_manager.py, 73, INFO, Processing ticker AMD\n", + "2024-10-23 21:12:23,469, data_manager.py, 108, INFO, Getting stock price data for AMD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:23,469, data_manager.py, 108, INFO, Getting stock price data for AMD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:23,743, data_manager.py, 82, INFO, Saving data for AMD by year\n", + "2024-10-23 21:12:23,743, data_manager.py, 82, INFO, Saving data for AMD by year\n", + "2024-10-23 21:12:25,023, data_manager.py, 73, INFO, Processing ticker AES\n", + "2024-10-23 21:12:25,023, data_manager.py, 73, INFO, Processing ticker AES\n", + "2024-10-23 21:12:25,026, data_manager.py, 108, INFO, Getting stock price data for AES from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:25,026, data_manager.py, 108, INFO, Getting stock price data for AES from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:25,382, data_manager.py, 82, INFO, Saving data for AES by year\n", + "2024-10-23 21:12:25,382, data_manager.py, 82, INFO, Saving data for AES by year\n", + "2024-10-23 21:12:26,769, data_manager.py, 73, INFO, Processing ticker AFL\n", + "2024-10-23 21:12:26,769, data_manager.py, 73, INFO, Processing ticker AFL\n", + "2024-10-23 21:12:26,771, data_manager.py, 108, INFO, Getting stock price data for AFL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:26,771, data_manager.py, 108, INFO, Getting stock price data for AFL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:27,239, data_manager.py, 82, INFO, Saving data for AFL by year\n", + "2024-10-23 21:12:27,239, data_manager.py, 82, INFO, Saving data for AFL by year\n", + "2024-10-23 21:12:28,585, data_manager.py, 73, INFO, Processing ticker A\n", + "2024-10-23 21:12:28,585, data_manager.py, 73, INFO, Processing ticker A\n", + "2024-10-23 21:12:28,587, data_manager.py, 108, INFO, Getting stock price data for A from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:28,587, data_manager.py, 108, INFO, Getting stock price data for A from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:28,924, data_manager.py, 82, INFO, Saving data for A by year\n", + "2024-10-23 21:12:28,924, data_manager.py, 82, INFO, Saving data for A by year\n", + "2024-10-23 21:12:30,359, data_manager.py, 73, INFO, Processing ticker APD\n", + "2024-10-23 21:12:30,359, data_manager.py, 73, INFO, Processing ticker APD\n", + "2024-10-23 21:12:30,361, data_manager.py, 108, INFO, Getting stock price data for APD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:30,361, data_manager.py, 108, INFO, Getting stock price data for APD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:30,697, data_manager.py, 82, INFO, Saving data for APD by year\n", + "2024-10-23 21:12:30,697, data_manager.py, 82, INFO, Saving data for APD by year\n", + "2024-10-23 21:12:32,004, data_manager.py, 73, INFO, Processing ticker ABNB\n", + "2024-10-23 21:12:32,004, data_manager.py, 73, INFO, Processing ticker ABNB\n", + "2024-10-23 21:12:32,006, data_manager.py, 108, INFO, Getting stock price data for ABNB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:32,006, data_manager.py, 108, INFO, Getting stock price data for ABNB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:32,108, data_manager.py, 82, INFO, Saving data for ABNB by year\n", + "2024-10-23 21:12:32,108, data_manager.py, 82, INFO, Saving data for ABNB by year\n", + "2024-10-23 21:12:32,422, data_manager.py, 73, INFO, Processing ticker AKAM\n", + "2024-10-23 21:12:32,422, data_manager.py, 73, INFO, Processing ticker AKAM\n", + "2024-10-23 21:12:32,426, data_manager.py, 108, INFO, Getting stock price data for AKAM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:32,426, data_manager.py, 108, INFO, Getting stock price data for AKAM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:32,583, data_manager.py, 82, INFO, Saving data for AKAM by year\n", + "2024-10-23 21:12:32,583, data_manager.py, 82, INFO, Saving data for AKAM by year\n", + "2024-10-23 21:12:34,022, data_manager.py, 73, INFO, Processing ticker ALB\n", + "2024-10-23 21:12:34,022, data_manager.py, 73, INFO, Processing ticker ALB\n", + "2024-10-23 21:12:34,024, data_manager.py, 108, INFO, Getting stock price data for ALB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:34,024, data_manager.py, 108, INFO, Getting stock price data for ALB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:34,385, data_manager.py, 82, INFO, Saving data for ALB by year\n", + "2024-10-23 21:12:34,385, data_manager.py, 82, INFO, Saving data for ALB by year\n", + "2024-10-23 21:12:35,885, data_manager.py, 73, INFO, Processing ticker ARE\n", + "2024-10-23 21:12:35,885, data_manager.py, 73, INFO, Processing ticker ARE\n", + "2024-10-23 21:12:35,887, data_manager.py, 108, INFO, Getting stock price data for ARE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:35,887, data_manager.py, 108, INFO, Getting stock price data for ARE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:36,178, data_manager.py, 82, INFO, Saving data for ARE by year\n", + "2024-10-23 21:12:36,178, data_manager.py, 82, INFO, Saving data for ARE by year\n", + "2024-10-23 21:12:37,643, data_manager.py, 73, INFO, Processing ticker ALGN\n", + "2024-10-23 21:12:37,643, data_manager.py, 73, INFO, Processing ticker ALGN\n", + "2024-10-23 21:12:37,646, data_manager.py, 108, INFO, Getting stock price data for ALGN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:37,646, data_manager.py, 108, INFO, Getting stock price data for ALGN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:38,058, data_manager.py, 82, INFO, Saving data for ALGN by year\n", + "2024-10-23 21:12:38,058, data_manager.py, 82, INFO, Saving data for ALGN by year\n", + "2024-10-23 21:12:39,375, data_manager.py, 73, INFO, Processing ticker ALLE\n", + "2024-10-23 21:12:39,375, data_manager.py, 73, INFO, Processing ticker ALLE\n", + "2024-10-23 21:12:39,377, data_manager.py, 108, INFO, Getting stock price data for ALLE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:39,377, data_manager.py, 108, INFO, Getting stock price data for ALLE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:39,637, data_manager.py, 82, INFO, Saving data for ALLE by year\n", + "2024-10-23 21:12:39,637, data_manager.py, 82, INFO, Saving data for ALLE by year\n", + "2024-10-23 21:12:40,460, data_manager.py, 73, INFO, Processing ticker LNT\n", + "2024-10-23 21:12:40,460, data_manager.py, 73, INFO, Processing ticker LNT\n", + "2024-10-23 21:12:40,462, data_manager.py, 108, INFO, Getting stock price data for LNT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:40,462, data_manager.py, 108, INFO, Getting stock price data for LNT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:40,878, data_manager.py, 82, INFO, Saving data for LNT by year\n", + "2024-10-23 21:12:40,878, data_manager.py, 82, INFO, Saving data for LNT by year\n", + "2024-10-23 21:12:42,349, data_manager.py, 73, INFO, Processing ticker ALL\n", + "2024-10-23 21:12:42,349, data_manager.py, 73, INFO, Processing ticker ALL\n", + "2024-10-23 21:12:42,352, data_manager.py, 108, INFO, Getting stock price data for ALL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:42,352, data_manager.py, 108, INFO, Getting stock price data for ALL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:42,704, data_manager.py, 82, INFO, Saving data for ALL by year\n", + "2024-10-23 21:12:42,704, data_manager.py, 82, INFO, Saving data for ALL by year\n", + "2024-10-23 21:12:44,025, data_manager.py, 73, INFO, Processing ticker GOOGL\n", + "2024-10-23 21:12:44,025, data_manager.py, 73, INFO, Processing ticker GOOGL\n", + "2024-10-23 21:12:44,027, data_manager.py, 108, INFO, Getting stock price data for GOOGL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:44,027, data_manager.py, 108, INFO, Getting stock price data for GOOGL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:44,467, data_manager.py, 82, INFO, Saving data for GOOGL by year\n", + "2024-10-23 21:12:44,467, data_manager.py, 82, INFO, Saving data for GOOGL by year\n", + "2024-10-23 21:12:45,753, data_manager.py, 73, INFO, Processing ticker GOOG\n", + "2024-10-23 21:12:45,753, data_manager.py, 73, INFO, Processing ticker GOOG\n", + "2024-10-23 21:12:45,755, data_manager.py, 108, INFO, Getting stock price data for GOOG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:45,755, data_manager.py, 108, INFO, Getting stock price data for GOOG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:46,258, data_manager.py, 82, INFO, Saving data for GOOG by year\n", + "2024-10-23 21:12:46,258, data_manager.py, 82, INFO, Saving data for GOOG by year\n", + "2024-10-23 21:12:47,477, data_manager.py, 73, INFO, Processing ticker MO\n", + "2024-10-23 21:12:47,477, data_manager.py, 73, INFO, Processing ticker MO\n", + "2024-10-23 21:12:47,479, data_manager.py, 108, INFO, Getting stock price data for MO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:47,479, data_manager.py, 108, INFO, Getting stock price data for MO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:47,880, data_manager.py, 82, INFO, Saving data for MO by year\n", + "2024-10-23 21:12:47,880, data_manager.py, 82, INFO, Saving data for MO by year\n", + "2024-10-23 21:12:49,060, data_manager.py, 73, INFO, Processing ticker AMZN\n", + "2024-10-23 21:12:49,060, data_manager.py, 73, INFO, Processing ticker AMZN\n", + "2024-10-23 21:12:49,061, data_manager.py, 108, INFO, Getting stock price data for AMZN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:49,061, data_manager.py, 108, INFO, Getting stock price data for AMZN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:49,402, data_manager.py, 82, INFO, Saving data for AMZN by year\n", + "2024-10-23 21:12:49,402, data_manager.py, 82, INFO, Saving data for AMZN by year\n", + "2024-10-23 21:12:50,591, data_manager.py, 73, INFO, Processing ticker AMCR\n", + "2024-10-23 21:12:50,591, data_manager.py, 73, INFO, Processing ticker AMCR\n", + "2024-10-23 21:12:50,593, data_manager.py, 108, INFO, Getting stock price data for AMCR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:50,593, data_manager.py, 108, INFO, Getting stock price data for AMCR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:50,786, data_manager.py, 82, INFO, Saving data for AMCR by year\n", + "2024-10-23 21:12:50,786, data_manager.py, 82, INFO, Saving data for AMCR by year\n", + "2024-10-23 21:12:51,479, data_manager.py, 73, INFO, Processing ticker AEE\n", + "2024-10-23 21:12:51,479, data_manager.py, 73, INFO, Processing ticker AEE\n", + "2024-10-23 21:12:51,481, data_manager.py, 108, INFO, Getting stock price data for AEE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:51,481, data_manager.py, 108, INFO, Getting stock price data for AEE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:51,892, data_manager.py, 82, INFO, Saving data for AEE by year\n", + "2024-10-23 21:12:51,892, data_manager.py, 82, INFO, Saving data for AEE by year\n", + "2024-10-23 21:12:53,076, data_manager.py, 73, INFO, Processing ticker AAL\n", + "2024-10-23 21:12:53,076, data_manager.py, 73, INFO, Processing ticker AAL\n", + "2024-10-23 21:12:53,077, data_manager.py, 108, INFO, Getting stock price data for AAL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:53,077, data_manager.py, 108, INFO, Getting stock price data for AAL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:14,352, data_manager.py, 82, INFO, Saving data for AAL by year\n", + "2024-10-23 21:13:14,352, data_manager.py, 82, INFO, Saving data for AAL by year\n", + "2024-10-23 21:12:54,418, data_manager.py, 73, INFO, Processing ticker AEP\n", + "2024-10-23 21:12:54,418, data_manager.py, 73, INFO, Processing ticker AEP\n", + "2024-10-23 21:12:54,420, data_manager.py, 108, INFO, Getting stock price data for AEP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:54,420, data_manager.py, 108, INFO, Getting stock price data for AEP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:54,820, data_manager.py, 82, INFO, Saving data for AEP by year\n", + "2024-10-23 21:12:54,820, data_manager.py, 82, INFO, Saving data for AEP by year\n", + "2024-10-23 21:12:56,020, data_manager.py, 73, INFO, Processing ticker AXP\n", + "2024-10-23 21:12:56,020, data_manager.py, 73, INFO, Processing ticker AXP\n", + "2024-10-23 21:12:56,021, data_manager.py, 108, INFO, Getting stock price data for AXP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:56,021, data_manager.py, 108, INFO, Getting stock price data for AXP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:56,431, data_manager.py, 82, INFO, Saving data for AXP by year\n", + "2024-10-23 21:12:56,431, data_manager.py, 82, INFO, Saving data for AXP by year\n", + "2024-10-23 21:12:57,642, data_manager.py, 73, INFO, Processing ticker AIG\n", + "2024-10-23 21:12:57,642, data_manager.py, 73, INFO, Processing ticker AIG\n", + "2024-10-23 21:12:57,645, data_manager.py, 108, INFO, Getting stock price data for AIG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:57,645, data_manager.py, 108, INFO, Getting stock price data for AIG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:58,013, data_manager.py, 82, INFO, Saving data for AIG by year\n", + "2024-10-23 21:12:58,013, data_manager.py, 82, INFO, Saving data for AIG by year\n", + "2024-10-23 21:12:59,372, data_manager.py, 73, INFO, Processing ticker AMT\n", + "2024-10-23 21:12:59,372, data_manager.py, 73, INFO, Processing ticker AMT\n", + "2024-10-23 21:12:59,374, data_manager.py, 108, INFO, Getting stock price data for AMT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:12:59,374, data_manager.py, 108, INFO, Getting stock price data for AMT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:12:59,695, data_manager.py, 82, INFO, Saving data for AMT by year\n", + "2024-10-23 21:12:59,695, data_manager.py, 82, INFO, Saving data for AMT by year\n", + "2024-10-23 21:13:01,108, data_manager.py, 73, INFO, Processing ticker AWK\n", + "2024-10-23 21:13:01,108, data_manager.py, 73, INFO, Processing ticker AWK\n", + "2024-10-23 21:13:01,109, data_manager.py, 108, INFO, Getting stock price data for AWK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:01,109, data_manager.py, 108, INFO, Getting stock price data for AWK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:01,365, data_manager.py, 82, INFO, Saving data for AWK by year\n", + "2024-10-23 21:13:01,365, data_manager.py, 82, INFO, Saving data for AWK by year\n", + "2024-10-23 21:13:02,305, data_manager.py, 73, INFO, Processing ticker AMP\n", + "2024-10-23 21:13:02,305, data_manager.py, 73, INFO, Processing ticker AMP\n", + "2024-10-23 21:13:02,307, data_manager.py, 108, INFO, Getting stock price data for AMP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:02,307, data_manager.py, 108, INFO, Getting stock price data for AMP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:02,563, data_manager.py, 82, INFO, Saving data for AMP by year\n", + "2024-10-23 21:13:02,563, data_manager.py, 82, INFO, Saving data for AMP by year\n", + "2024-10-23 21:13:03,545, data_manager.py, 73, INFO, Processing ticker AME\n", + "2024-10-23 21:13:03,545, data_manager.py, 73, INFO, Processing ticker AME\n", + "2024-10-23 21:13:03,547, data_manager.py, 108, INFO, Getting stock price data for AME from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:03,547, data_manager.py, 108, INFO, Getting stock price data for AME from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:03,909, data_manager.py, 82, INFO, Saving data for AME by year\n", + "2024-10-23 21:13:03,909, data_manager.py, 82, INFO, Saving data for AME by year\n", + "2024-10-23 21:13:05,198, data_manager.py, 73, INFO, Processing ticker AMGN\n", + "2024-10-23 21:13:05,198, data_manager.py, 73, INFO, Processing ticker AMGN\n", + "2024-10-23 21:13:05,201, data_manager.py, 108, INFO, Getting stock price data for AMGN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:05,201, data_manager.py, 108, INFO, Getting stock price data for AMGN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:05,466, data_manager.py, 82, INFO, Saving data for AMGN by year\n", + "2024-10-23 21:13:05,466, data_manager.py, 82, INFO, Saving data for AMGN by year\n", + "2024-10-23 21:13:06,785, data_manager.py, 73, INFO, Processing ticker APH\n", + "2024-10-23 21:13:06,785, data_manager.py, 73, INFO, Processing ticker APH\n", + "2024-10-23 21:13:06,787, data_manager.py, 108, INFO, Getting stock price data for APH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:06,787, data_manager.py, 108, INFO, Getting stock price data for APH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:07,056, data_manager.py, 82, INFO, Saving data for APH by year\n", + "2024-10-23 21:13:07,056, data_manager.py, 82, INFO, Saving data for APH by year\n", + "2024-10-23 21:13:08,434, data_manager.py, 73, INFO, Processing ticker ADI\n", + "2024-10-23 21:13:08,434, data_manager.py, 73, INFO, Processing ticker ADI\n", + "2024-10-23 21:13:08,436, data_manager.py, 108, INFO, Getting stock price data for ADI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:08,436, data_manager.py, 108, INFO, Getting stock price data for ADI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:08,796, data_manager.py, 82, INFO, Saving data for ADI by year\n", + "2024-10-23 21:13:08,796, data_manager.py, 82, INFO, Saving data for ADI by year\n", + "2024-10-23 21:13:10,131, data_manager.py, 73, INFO, Processing ticker ANSS\n", + "2024-10-23 21:13:10,131, data_manager.py, 73, INFO, Processing ticker ANSS\n", + "2024-10-23 21:13:10,132, data_manager.py, 108, INFO, Getting stock price data for ANSS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:10,132, data_manager.py, 108, INFO, Getting stock price data for ANSS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:10,354, data_manager.py, 82, INFO, Saving data for ANSS by year\n", + "2024-10-23 21:13:10,354, data_manager.py, 82, INFO, Saving data for ANSS by year\n", + "2024-10-23 21:13:11,683, data_manager.py, 73, INFO, Processing ticker AON\n", + "2024-10-23 21:13:11,683, data_manager.py, 73, INFO, Processing ticker AON\n", + "2024-10-23 21:13:11,685, data_manager.py, 108, INFO, Getting stock price data for AON from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:11,685, data_manager.py, 108, INFO, Getting stock price data for AON from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:11,954, data_manager.py, 82, INFO, Saving data for AON by year\n", + "2024-10-23 21:13:11,954, data_manager.py, 82, INFO, Saving data for AON by year\n", + "2024-10-23 21:13:34,390, data_manager.py, 73, INFO, Processing ticker APA\n", + "2024-10-23 21:13:34,390, data_manager.py, 73, INFO, Processing ticker APA\n", + "2024-10-23 21:13:34,392, data_manager.py, 108, INFO, Getting stock price data for APA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:34,392, data_manager.py, 108, INFO, Getting stock price data for APA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:13,676, data_manager.py, 82, INFO, Saving data for APA by year\n", + "2024-10-23 21:13:13,676, data_manager.py, 82, INFO, Saving data for APA by year\n", + "2024-10-23 21:13:14,995, data_manager.py, 73, INFO, Processing ticker AAPL\n", + "2024-10-23 21:13:14,995, data_manager.py, 73, INFO, Processing ticker AAPL\n", + "2024-10-23 21:13:14,997, data_manager.py, 108, INFO, Getting stock price data for AAPL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:14,997, data_manager.py, 108, INFO, Getting stock price data for AAPL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:15,311, data_manager.py, 82, INFO, Saving data for AAPL by year\n", + "2024-10-23 21:13:15,311, data_manager.py, 82, INFO, Saving data for AAPL by year\n", + "2024-10-23 21:13:16,613, data_manager.py, 73, INFO, Processing ticker AMAT\n", + "2024-10-23 21:13:16,613, data_manager.py, 73, INFO, Processing ticker AMAT\n", + "2024-10-23 21:13:16,615, data_manager.py, 108, INFO, Getting stock price data for AMAT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:16,615, data_manager.py, 108, INFO, Getting stock price data for AMAT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:16,959, data_manager.py, 82, INFO, Saving data for AMAT by year\n", + "2024-10-23 21:13:16,959, data_manager.py, 82, INFO, Saving data for AMAT by year\n", + "2024-10-23 21:13:18,159, data_manager.py, 73, INFO, Processing ticker APTV\n", + "2024-10-23 21:13:18,159, data_manager.py, 73, INFO, Processing ticker APTV\n", + "2024-10-23 21:13:18,161, data_manager.py, 108, INFO, Getting stock price data for APTV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:18,161, data_manager.py, 108, INFO, Getting stock price data for APTV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:18,422, data_manager.py, 82, INFO, Saving data for APTV by year\n", + "2024-10-23 21:13:18,422, data_manager.py, 82, INFO, Saving data for APTV by year\n", + "2024-10-23 21:13:18,990, data_manager.py, 73, INFO, Processing ticker ACGL\n", + "2024-10-23 21:13:18,990, data_manager.py, 73, INFO, Processing ticker ACGL\n", + "2024-10-23 21:13:18,992, data_manager.py, 108, INFO, Getting stock price data for ACGL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:18,992, data_manager.py, 108, INFO, Getting stock price data for ACGL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:19,215, data_manager.py, 82, INFO, Saving data for ACGL by year\n", + "2024-10-23 21:13:19,215, data_manager.py, 82, INFO, Saving data for ACGL by year\n", + "2024-10-23 21:13:20,511, data_manager.py, 73, INFO, Processing ticker ADM\n", + "2024-10-23 21:13:20,511, data_manager.py, 73, INFO, Processing ticker ADM\n", + "2024-10-23 21:13:20,512, data_manager.py, 108, INFO, Getting stock price data for ADM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:20,512, data_manager.py, 108, INFO, Getting stock price data for ADM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:20,775, data_manager.py, 82, INFO, Saving data for ADM by year\n", + "2024-10-23 21:13:20,775, data_manager.py, 82, INFO, Saving data for ADM by year\n", + "2024-10-23 21:13:22,023, data_manager.py, 73, INFO, Processing ticker ANET\n", + "2024-10-23 21:13:22,023, data_manager.py, 73, INFO, Processing ticker ANET\n", + "2024-10-23 21:13:22,025, data_manager.py, 108, INFO, Getting stock price data for ANET from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:22,025, data_manager.py, 108, INFO, Getting stock price data for ANET from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:22,172, data_manager.py, 82, INFO, Saving data for ANET by year\n", + "2024-10-23 21:13:22,172, data_manager.py, 82, INFO, Saving data for ANET by year\n", + "2024-10-23 21:13:22,646, data_manager.py, 73, INFO, Processing ticker AJG\n", + "2024-10-23 21:13:22,646, data_manager.py, 73, INFO, Processing ticker AJG\n", + "2024-10-23 21:13:22,647, data_manager.py, 108, INFO, Getting stock price data for AJG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:22,647, data_manager.py, 108, INFO, Getting stock price data for AJG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:22,982, data_manager.py, 82, INFO, Saving data for AJG by year\n", + "2024-10-23 21:13:22,982, data_manager.py, 82, INFO, Saving data for AJG by year\n", + "2024-10-23 21:13:24,216, data_manager.py, 73, INFO, Processing ticker AIZ\n", + "2024-10-23 21:13:24,216, data_manager.py, 73, INFO, Processing ticker AIZ\n", + "2024-10-23 21:13:24,218, data_manager.py, 108, INFO, Getting stock price data for AIZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:24,218, data_manager.py, 108, INFO, Getting stock price data for AIZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:24,456, data_manager.py, 82, INFO, Saving data for AIZ by year\n", + "2024-10-23 21:13:24,456, data_manager.py, 82, INFO, Saving data for AIZ by year\n", + "2024-10-23 21:13:25,534, data_manager.py, 73, INFO, Processing ticker T\n", + "2024-10-23 21:13:25,534, data_manager.py, 73, INFO, Processing ticker T\n", + "2024-10-23 21:13:25,537, data_manager.py, 108, INFO, Getting stock price data for T from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:25,537, data_manager.py, 108, INFO, Getting stock price data for T from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:25,834, data_manager.py, 82, INFO, Saving data for T by year\n", + "2024-10-23 21:13:25,834, data_manager.py, 82, INFO, Saving data for T by year\n", + "2024-10-23 21:13:27,007, data_manager.py, 73, INFO, Processing ticker ATO\n", + "2024-10-23 21:13:27,007, data_manager.py, 73, INFO, Processing ticker ATO\n", + "2024-10-23 21:13:27,008, data_manager.py, 108, INFO, Getting stock price data for ATO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:27,008, data_manager.py, 108, INFO, Getting stock price data for ATO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:27,277, data_manager.py, 82, INFO, Saving data for ATO by year\n", + "2024-10-23 21:13:27,277, data_manager.py, 82, INFO, Saving data for ATO by year\n", + "2024-10-23 21:13:28,631, data_manager.py, 73, INFO, Processing ticker ADSK\n", + "2024-10-23 21:13:28,631, data_manager.py, 73, INFO, Processing ticker ADSK\n", + "2024-10-23 21:13:28,632, data_manager.py, 108, INFO, Getting stock price data for ADSK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:28,632, data_manager.py, 108, INFO, Getting stock price data for ADSK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:28,863, data_manager.py, 82, INFO, Saving data for ADSK by year\n", + "2024-10-23 21:13:28,863, data_manager.py, 82, INFO, Saving data for ADSK by year\n", + "2024-10-23 21:13:30,057, data_manager.py, 73, INFO, Processing ticker ADP\n", + "2024-10-23 21:13:30,057, data_manager.py, 73, INFO, Processing ticker ADP\n", + "2024-10-23 21:13:30,059, data_manager.py, 108, INFO, Getting stock price data for ADP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:30,059, data_manager.py, 108, INFO, Getting stock price data for ADP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:30,337, data_manager.py, 82, INFO, Saving data for ADP by year\n", + "2024-10-23 21:13:30,337, data_manager.py, 82, INFO, Saving data for ADP by year\n", + "2024-10-23 21:13:31,593, data_manager.py, 73, INFO, Processing ticker AZO\n", + "2024-10-23 21:13:31,593, data_manager.py, 73, INFO, Processing ticker AZO\n", + "2024-10-23 21:13:31,595, data_manager.py, 108, INFO, Getting stock price data for AZO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:31,595, data_manager.py, 108, INFO, Getting stock price data for AZO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:31,786, data_manager.py, 82, INFO, Saving data for AZO by year\n", + "2024-10-23 21:13:31,786, data_manager.py, 82, INFO, Saving data for AZO by year\n", + "2024-10-23 21:13:32,966, data_manager.py, 73, INFO, Processing ticker AVB\n", + "2024-10-23 21:13:32,966, data_manager.py, 73, INFO, Processing ticker AVB\n", + "2024-10-23 21:13:32,968, data_manager.py, 108, INFO, Getting stock price data for AVB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:32,968, data_manager.py, 108, INFO, Getting stock price data for AVB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:33,284, data_manager.py, 82, INFO, Saving data for AVB by year\n", + "2024-10-23 21:13:33,284, data_manager.py, 82, INFO, Saving data for AVB by year\n", + "2024-10-23 21:13:34,642, data_manager.py, 73, INFO, Processing ticker AVY\n", + "2024-10-23 21:13:34,642, data_manager.py, 73, INFO, Processing ticker AVY\n", + "2024-10-23 21:13:34,643, data_manager.py, 108, INFO, Getting stock price data for AVY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:34,643, data_manager.py, 108, INFO, Getting stock price data for AVY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:34,900, data_manager.py, 82, INFO, Saving data for AVY by year\n", + "2024-10-23 21:13:34,900, data_manager.py, 82, INFO, Saving data for AVY by year\n", + "2024-10-23 21:13:36,165, data_manager.py, 73, INFO, Processing ticker AXON\n", + "2024-10-23 21:13:36,165, data_manager.py, 73, INFO, Processing ticker AXON\n", + "2024-10-23 21:13:36,166, data_manager.py, 108, INFO, Getting stock price data for AXON from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:36,166, data_manager.py, 108, INFO, Getting stock price data for AXON from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:36,340, data_manager.py, 82, INFO, Saving data for AXON by year\n", + "2024-10-23 21:13:36,340, data_manager.py, 82, INFO, Saving data for AXON by year\n", + "2024-10-23 21:13:37,620, data_manager.py, 73, INFO, Processing ticker BKR\n", + "2024-10-23 21:13:37,620, data_manager.py, 73, INFO, Processing ticker BKR\n", + "2024-10-23 21:13:37,624, data_manager.py, 108, INFO, Getting stock price data for BKR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:37,624, data_manager.py, 108, INFO, Getting stock price data for BKR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:37,856, data_manager.py, 82, INFO, Saving data for BKR by year\n", + "2024-10-23 21:13:37,856, data_manager.py, 82, INFO, Saving data for BKR by year\n", + "2024-10-23 21:13:39,149, data_manager.py, 73, INFO, Processing ticker BALL\n", + "2024-10-23 21:13:39,149, data_manager.py, 73, INFO, Processing ticker BALL\n", + "2024-10-23 21:13:39,151, data_manager.py, 108, INFO, Getting stock price data for BALL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:39,151, data_manager.py, 108, INFO, Getting stock price data for BALL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:39,407, data_manager.py, 82, INFO, Saving data for BALL by year\n", + "2024-10-23 21:13:39,407, data_manager.py, 82, INFO, Saving data for BALL by year\n", + "2024-10-23 21:13:40,617, data_manager.py, 73, INFO, Processing ticker BAC\n", + "2024-10-23 21:13:40,617, data_manager.py, 73, INFO, Processing ticker BAC\n", + "2024-10-23 21:13:40,618, data_manager.py, 108, INFO, Getting stock price data for BAC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:40,618, data_manager.py, 108, INFO, Getting stock price data for BAC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:40,881, data_manager.py, 82, INFO, Saving data for BAC by year\n", + "2024-10-23 21:13:40,881, data_manager.py, 82, INFO, Saving data for BAC by year\n", + "2024-10-23 21:13:42,070, data_manager.py, 73, INFO, Processing ticker BK\n", + "2024-10-23 21:13:42,070, data_manager.py, 73, INFO, Processing ticker BK\n", + "2024-10-23 21:13:42,072, data_manager.py, 108, INFO, Getting stock price data for BK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:42,072, data_manager.py, 108, INFO, Getting stock price data for BK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:42,319, data_manager.py, 82, INFO, Saving data for BK by year\n", + "2024-10-23 21:13:42,319, data_manager.py, 82, INFO, Saving data for BK by year\n", + "2024-10-23 21:13:43,530, data_manager.py, 73, INFO, Processing ticker BBWI\n", + "2024-10-23 21:13:43,530, data_manager.py, 73, INFO, Processing ticker BBWI\n", + "2024-10-23 21:13:43,531, data_manager.py, 108, INFO, Getting stock price data for BBWI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:43,531, data_manager.py, 108, INFO, Getting stock price data for BBWI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:43,961, data_manager.py, 82, INFO, Saving data for BBWI by year\n", + "2024-10-23 21:13:43,961, data_manager.py, 82, INFO, Saving data for BBWI by year\n", + "2024-10-23 21:13:45,252, data_manager.py, 73, INFO, Processing ticker BAX\n", + "2024-10-23 21:13:45,252, data_manager.py, 73, INFO, Processing ticker BAX\n", + "2024-10-23 21:13:45,253, data_manager.py, 108, INFO, Getting stock price data for BAX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:45,253, data_manager.py, 108, INFO, Getting stock price data for BAX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:45,570, data_manager.py, 82, INFO, Saving data for BAX by year\n", + "2024-10-23 21:13:45,570, data_manager.py, 82, INFO, Saving data for BAX by year\n", + "2024-10-23 21:13:46,839, data_manager.py, 73, INFO, Processing ticker BDX\n", + "2024-10-23 21:13:46,839, data_manager.py, 73, INFO, Processing ticker BDX\n", + "2024-10-23 21:13:46,841, data_manager.py, 108, INFO, Getting stock price data for BDX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:46,841, data_manager.py, 108, INFO, Getting stock price data for BDX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:47,108, data_manager.py, 82, INFO, Saving data for BDX by year\n", + "2024-10-23 21:13:47,108, data_manager.py, 82, INFO, Saving data for BDX by year\n", + "2024-10-23 21:13:48,350, data_manager.py, 73, INFO, Processing ticker BRK.B\n", + "2024-10-23 21:13:48,350, data_manager.py, 73, INFO, Processing ticker BRK.B\n", + "2024-10-23 21:13:48,352, data_manager.py, 108, INFO, Getting stock price data for BRK.B from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:48,352, data_manager.py, 108, INFO, Getting stock price data for BRK.B from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['BRK.B']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n", + "2024-10-23 21:13:49,839, data_manager.py, 82, INFO, Saving data for BRK.B by year\n", + "2024-10-23 21:13:49,839, data_manager.py, 82, INFO, Saving data for BRK.B by year\n", + "2024-10-23 21:13:49,841, data_manager.py, 100, WARNING, No data found for BRK.B\n", + "2024-10-23 21:13:49,841, data_manager.py, 100, WARNING, No data found for BRK.B\n", + "2024-10-23 21:13:49,843, data_manager.py, 73, INFO, Processing ticker BBY\n", + "2024-10-23 21:13:49,843, data_manager.py, 73, INFO, Processing ticker BBY\n", + "2024-10-23 21:13:49,844, data_manager.py, 108, INFO, Getting stock price data for BBY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:49,844, data_manager.py, 108, INFO, Getting stock price data for BBY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:50,083, data_manager.py, 82, INFO, Saving data for BBY by year\n", + "2024-10-23 21:13:50,083, data_manager.py, 82, INFO, Saving data for BBY by year\n", + "2024-10-23 21:13:51,477, data_manager.py, 73, INFO, Processing ticker BIO\n", + "2024-10-23 21:13:51,477, data_manager.py, 73, INFO, Processing ticker BIO\n", + "2024-10-23 21:13:51,479, data_manager.py, 108, INFO, Getting stock price data for BIO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:51,479, data_manager.py, 108, INFO, Getting stock price data for BIO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:51,680, data_manager.py, 82, INFO, Saving data for BIO by year\n", + "2024-10-23 21:13:51,680, data_manager.py, 82, INFO, Saving data for BIO by year\n", + "2024-10-23 21:13:52,954, data_manager.py, 73, INFO, Processing ticker TECH\n", + "2024-10-23 21:13:52,954, data_manager.py, 73, INFO, Processing ticker TECH\n", + "2024-10-23 21:13:52,955, data_manager.py, 108, INFO, Getting stock price data for TECH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:52,955, data_manager.py, 108, INFO, Getting stock price data for TECH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:53,195, data_manager.py, 82, INFO, Saving data for TECH by year\n", + "2024-10-23 21:13:53,195, data_manager.py, 82, INFO, Saving data for TECH by year\n", + "2024-10-23 21:13:54,395, data_manager.py, 73, INFO, Processing ticker BIIB\n", + "2024-10-23 21:13:54,395, data_manager.py, 73, INFO, Processing ticker BIIB\n", + "2024-10-23 21:13:54,397, data_manager.py, 108, INFO, Getting stock price data for BIIB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:54,397, data_manager.py, 108, INFO, Getting stock price data for BIIB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:54,596, data_manager.py, 82, INFO, Saving data for BIIB by year\n", + "2024-10-23 21:13:54,596, data_manager.py, 82, INFO, Saving data for BIIB by year\n", + "2024-10-23 21:13:55,840, data_manager.py, 73, INFO, Processing ticker BLK\n", + "2024-10-23 21:13:55,840, data_manager.py, 73, INFO, Processing ticker BLK\n", + "2024-10-23 21:13:55,842, data_manager.py, 108, INFO, Getting stock price data for BLK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:55,842, data_manager.py, 108, INFO, Getting stock price data for BLK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:56,070, data_manager.py, 82, INFO, Saving data for BLK by year\n", + "2024-10-23 21:13:56,070, data_manager.py, 82, INFO, Saving data for BLK by year\n", + "2024-10-23 21:13:57,461, data_manager.py, 73, INFO, Processing ticker BX\n", + "2024-10-23 21:13:57,461, data_manager.py, 73, INFO, Processing ticker BX\n", + "2024-10-23 21:13:57,463, data_manager.py, 108, INFO, Getting stock price data for BX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:13:57,463, data_manager.py, 108, INFO, Getting stock price data for BX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:57,642, data_manager.py, 82, INFO, Saving data for BX by year\n", + "2024-10-23 21:13:57,642, data_manager.py, 82, INFO, Saving data for BX by year\n", + "2024-10-23 21:14:19,538, data_manager.py, 73, INFO, Processing ticker BA\n", + "2024-10-23 21:14:19,538, data_manager.py, 73, INFO, Processing ticker BA\n", + "2024-10-23 21:14:19,539, data_manager.py, 108, INFO, Getting stock price data for BA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:19,539, data_manager.py, 108, INFO, Getting stock price data for BA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:13:58,748, data_manager.py, 82, INFO, Saving data for BA by year\n", + "2024-10-23 21:13:58,748, data_manager.py, 82, INFO, Saving data for BA by year\n", + "2024-10-23 21:14:00,019, data_manager.py, 73, INFO, Processing ticker BKNG\n", + "2024-10-23 21:14:00,019, data_manager.py, 73, INFO, Processing ticker BKNG\n", + "2024-10-23 21:14:00,020, data_manager.py, 108, INFO, Getting stock price data for BKNG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:00,020, data_manager.py, 108, INFO, Getting stock price data for BKNG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:00,247, data_manager.py, 82, INFO, Saving data for BKNG by year\n", + "2024-10-23 21:14:00,247, data_manager.py, 82, INFO, Saving data for BKNG by year\n", + "2024-10-23 21:14:01,455, data_manager.py, 73, INFO, Processing ticker BWA\n", + "2024-10-23 21:14:01,455, data_manager.py, 73, INFO, Processing ticker BWA\n", + "2024-10-23 21:14:01,458, data_manager.py, 108, INFO, Getting stock price data for BWA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:01,458, data_manager.py, 108, INFO, Getting stock price data for BWA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:02,295, data_manager.py, 82, INFO, Saving data for BWA by year\n", + "2024-10-23 21:14:02,295, data_manager.py, 82, INFO, Saving data for BWA by year\n", + "2024-10-23 21:14:03,622, data_manager.py, 73, INFO, Processing ticker BXP\n", + "2024-10-23 21:14:03,622, data_manager.py, 73, INFO, Processing ticker BXP\n", + "2024-10-23 21:14:03,623, data_manager.py, 108, INFO, Getting stock price data for BXP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:03,623, data_manager.py, 108, INFO, Getting stock price data for BXP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:04,130, data_manager.py, 82, INFO, Saving data for BXP by year\n", + "2024-10-23 21:14:04,130, data_manager.py, 82, INFO, Saving data for BXP by year\n", + "2024-10-23 21:14:05,219, data_manager.py, 73, INFO, Processing ticker BSX\n", + "2024-10-23 21:14:05,219, data_manager.py, 73, INFO, Processing ticker BSX\n", + "2024-10-23 21:14:05,222, data_manager.py, 108, INFO, Getting stock price data for BSX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:05,222, data_manager.py, 108, INFO, Getting stock price data for BSX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:05,757, data_manager.py, 82, INFO, Saving data for BSX by year\n", + "2024-10-23 21:14:05,757, data_manager.py, 82, INFO, Saving data for BSX by year\n", + "2024-10-23 21:14:07,004, data_manager.py, 73, INFO, Processing ticker BMY\n", + "2024-10-23 21:14:07,004, data_manager.py, 73, INFO, Processing ticker BMY\n", + "2024-10-23 21:14:07,006, data_manager.py, 108, INFO, Getting stock price data for BMY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:07,006, data_manager.py, 108, INFO, Getting stock price data for BMY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:07,842, data_manager.py, 82, INFO, Saving data for BMY by year\n", + "2024-10-23 21:14:07,842, data_manager.py, 82, INFO, Saving data for BMY by year\n", + "2024-10-23 21:14:08,949, data_manager.py, 73, INFO, Processing ticker AVGO\n", + "2024-10-23 21:14:08,949, data_manager.py, 73, INFO, Processing ticker AVGO\n", + "2024-10-23 21:14:08,951, data_manager.py, 108, INFO, Getting stock price data for AVGO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:08,951, data_manager.py, 108, INFO, Getting stock price data for AVGO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:09,515, data_manager.py, 82, INFO, Saving data for AVGO by year\n", + "2024-10-23 21:14:09,515, data_manager.py, 82, INFO, Saving data for AVGO by year\n", + "2024-10-23 21:14:10,402, data_manager.py, 73, INFO, Processing ticker BR\n", + "2024-10-23 21:14:10,402, data_manager.py, 73, INFO, Processing ticker BR\n", + "2024-10-23 21:14:10,403, data_manager.py, 108, INFO, Getting stock price data for BR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:10,403, data_manager.py, 108, INFO, Getting stock price data for BR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:10,797, data_manager.py, 82, INFO, Saving data for BR by year\n", + "2024-10-23 21:14:10,797, data_manager.py, 82, INFO, Saving data for BR by year\n", + "2024-10-23 21:14:11,725, data_manager.py, 73, INFO, Processing ticker BRO\n", + "2024-10-23 21:14:11,725, data_manager.py, 73, INFO, Processing ticker BRO\n", + "2024-10-23 21:14:11,727, data_manager.py, 108, INFO, Getting stock price data for BRO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:11,727, data_manager.py, 108, INFO, Getting stock price data for BRO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:12,220, data_manager.py, 82, INFO, Saving data for BRO by year\n", + "2024-10-23 21:14:12,220, data_manager.py, 82, INFO, Saving data for BRO by year\n", + "2024-10-23 21:14:34,448, data_manager.py, 73, INFO, Processing ticker BF.B\n", + "2024-10-23 21:14:34,448, data_manager.py, 73, INFO, Processing ticker BF.B\n", + "2024-10-23 21:14:34,450, data_manager.py, 108, INFO, Getting stock price data for BF.B from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:34,450, data_manager.py, 108, INFO, Getting stock price data for BF.B from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['BF.B']: YFPricesMissingError('$%ticker%: possibly delisted; No price data found (1d 2000-01-01 -> 2024-10-23)')\n", + "2024-10-23 21:14:13,774, data_manager.py, 82, INFO, Saving data for BF.B by year\n", + "2024-10-23 21:14:13,774, data_manager.py, 82, INFO, Saving data for BF.B by year\n", + "2024-10-23 21:14:13,775, data_manager.py, 100, WARNING, No data found for BF.B\n", + "2024-10-23 21:14:13,775, data_manager.py, 100, WARNING, No data found for BF.B\n", + "2024-10-23 21:14:13,777, data_manager.py, 73, INFO, Processing ticker BLDR\n", + "2024-10-23 21:14:13,777, data_manager.py, 73, INFO, Processing ticker BLDR\n", + "2024-10-23 21:14:13,778, data_manager.py, 108, INFO, Getting stock price data for BLDR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:13,778, data_manager.py, 108, INFO, Getting stock price data for BLDR from 2000-01-01 to 2024-10-23\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "$BF.B: possibly delisted; No price data found (1d 2000-01-01 -> 2024-10-23)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:14,511, data_manager.py, 82, INFO, Saving data for BLDR by year\n", + "2024-10-23 21:14:14,511, data_manager.py, 82, INFO, Saving data for BLDR by year\n", + "2024-10-23 21:14:15,621, data_manager.py, 73, INFO, Processing ticker BG\n", + "2024-10-23 21:14:15,621, data_manager.py, 73, INFO, Processing ticker BG\n", + "2024-10-23 21:14:15,623, data_manager.py, 108, INFO, Getting stock price data for BG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:15,623, data_manager.py, 108, INFO, Getting stock price data for BG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:16,496, data_manager.py, 82, INFO, Saving data for BG by year\n", + "2024-10-23 21:14:16,496, data_manager.py, 82, INFO, Saving data for BG by year\n", + "2024-10-23 21:14:17,900, data_manager.py, 73, INFO, Processing ticker CDNS\n", + "2024-10-23 21:14:17,900, data_manager.py, 73, INFO, Processing ticker CDNS\n", + "2024-10-23 21:14:17,902, data_manager.py, 108, INFO, Getting stock price data for CDNS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:17,902, data_manager.py, 108, INFO, Getting stock price data for CDNS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:19,762, data_manager.py, 82, INFO, Saving data for CDNS by year\n", + "2024-10-23 21:14:19,762, data_manager.py, 82, INFO, Saving data for CDNS by year\n", + "2024-10-23 21:14:20,973, data_manager.py, 73, INFO, Processing ticker CZR\n", + "2024-10-23 21:14:20,973, data_manager.py, 73, INFO, Processing ticker CZR\n", + "2024-10-23 21:14:20,974, data_manager.py, 108, INFO, Getting stock price data for CZR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:20,974, data_manager.py, 108, INFO, Getting stock price data for CZR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:21,284, data_manager.py, 82, INFO, Saving data for CZR by year\n", + "2024-10-23 21:14:21,284, data_manager.py, 82, INFO, Saving data for CZR by year\n", + "2024-10-23 21:14:21,822, data_manager.py, 73, INFO, Processing ticker CPT\n", + "2024-10-23 21:14:21,822, data_manager.py, 73, INFO, Processing ticker CPT\n", + "2024-10-23 21:14:21,824, data_manager.py, 108, INFO, Getting stock price data for CPT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:21,824, data_manager.py, 108, INFO, Getting stock price data for CPT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:23,352, data_manager.py, 82, INFO, Saving data for CPT by year\n", + "2024-10-23 21:14:23,352, data_manager.py, 82, INFO, Saving data for CPT by year\n", + "2024-10-23 21:14:24,676, data_manager.py, 73, INFO, Processing ticker CPB\n", + "2024-10-23 21:14:24,676, data_manager.py, 73, INFO, Processing ticker CPB\n", + "2024-10-23 21:14:24,678, data_manager.py, 108, INFO, Getting stock price data for CPB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:24,678, data_manager.py, 108, INFO, Getting stock price data for CPB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:25,326, data_manager.py, 82, INFO, Saving data for CPB by year\n", + "2024-10-23 21:14:25,326, data_manager.py, 82, INFO, Saving data for CPB by year\n", + "2024-10-23 21:14:26,613, data_manager.py, 73, INFO, Processing ticker COF\n", + "2024-10-23 21:14:26,613, data_manager.py, 73, INFO, Processing ticker COF\n", + "2024-10-23 21:14:26,614, data_manager.py, 108, INFO, Getting stock price data for COF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:26,614, data_manager.py, 108, INFO, Getting stock price data for COF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:27,278, data_manager.py, 82, INFO, Saving data for COF by year\n", + "2024-10-23 21:14:27,278, data_manager.py, 82, INFO, Saving data for COF by year\n", + "2024-10-23 21:14:49,512, data_manager.py, 73, INFO, Processing ticker CAH\n", + "2024-10-23 21:14:49,512, data_manager.py, 73, INFO, Processing ticker CAH\n", + "2024-10-23 21:14:49,514, data_manager.py, 108, INFO, Getting stock price data for CAH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:49,514, data_manager.py, 108, INFO, Getting stock price data for CAH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:29,999, data_manager.py, 82, INFO, Saving data for CAH by year\n", + "2024-10-23 21:14:29,999, data_manager.py, 82, INFO, Saving data for CAH by year\n", + "2024-10-23 21:14:31,307, data_manager.py, 73, INFO, Processing ticker KMX\n", + "2024-10-23 21:14:31,307, data_manager.py, 73, INFO, Processing ticker KMX\n", + "2024-10-23 21:14:31,309, data_manager.py, 108, INFO, Getting stock price data for KMX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:31,309, data_manager.py, 108, INFO, Getting stock price data for KMX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:31,940, data_manager.py, 82, INFO, Saving data for KMX by year\n", + "2024-10-23 21:14:31,940, data_manager.py, 82, INFO, Saving data for KMX by year\n", + "2024-10-23 21:14:33,192, data_manager.py, 73, INFO, Processing ticker CCL\n", + "2024-10-23 21:14:33,192, data_manager.py, 73, INFO, Processing ticker CCL\n", + "2024-10-23 21:14:33,194, data_manager.py, 108, INFO, Getting stock price data for CCL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:33,194, data_manager.py, 108, INFO, Getting stock price data for CCL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:55,236, data_manager.py, 82, INFO, Saving data for CCL by year\n", + "2024-10-23 21:14:55,236, data_manager.py, 82, INFO, Saving data for CCL by year\n", + "2024-10-23 21:14:56,660, data_manager.py, 73, INFO, Processing ticker CARR\n", + "2024-10-23 21:14:56,660, data_manager.py, 73, INFO, Processing ticker CARR\n", + "2024-10-23 21:14:56,661, data_manager.py, 108, INFO, Getting stock price data for CARR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:56,661, data_manager.py, 108, INFO, Getting stock price data for CARR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:56,851, data_manager.py, 82, INFO, Saving data for CARR by year\n", + "2024-10-23 21:14:56,851, data_manager.py, 82, INFO, Saving data for CARR by year\n", + "2024-10-23 21:14:57,097, data_manager.py, 73, INFO, Processing ticker CTLT\n", + "2024-10-23 21:14:57,097, data_manager.py, 73, INFO, Processing ticker CTLT\n", + "2024-10-23 21:14:57,099, data_manager.py, 108, INFO, Getting stock price data for CTLT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:57,099, data_manager.py, 108, INFO, Getting stock price data for CTLT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:57,386, data_manager.py, 82, INFO, Saving data for CTLT by year\n", + "2024-10-23 21:14:57,386, data_manager.py, 82, INFO, Saving data for CTLT by year\n", + "2024-10-23 21:14:57,943, data_manager.py, 73, INFO, Processing ticker CAT\n", + "2024-10-23 21:14:57,943, data_manager.py, 73, INFO, Processing ticker CAT\n", + "2024-10-23 21:14:57,944, data_manager.py, 108, INFO, Getting stock price data for CAT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:57,944, data_manager.py, 108, INFO, Getting stock price data for CAT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:59,007, data_manager.py, 82, INFO, Saving data for CAT by year\n", + "2024-10-23 21:14:59,007, data_manager.py, 82, INFO, Saving data for CAT by year\n", + "2024-10-23 21:15:00,250, data_manager.py, 73, INFO, Processing ticker CBOE\n", + "2024-10-23 21:15:00,250, data_manager.py, 73, INFO, Processing ticker CBOE\n", + "2024-10-23 21:15:00,254, data_manager.py, 108, INFO, Getting stock price data for CBOE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:00,254, data_manager.py, 108, INFO, Getting stock price data for CBOE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:01,070, data_manager.py, 82, INFO, Saving data for CBOE by year\n", + "2024-10-23 21:15:01,070, data_manager.py, 82, INFO, Saving data for CBOE by year\n", + "2024-10-23 21:15:01,843, data_manager.py, 73, INFO, Processing ticker CBRE\n", + "2024-10-23 21:15:01,843, data_manager.py, 73, INFO, Processing ticker CBRE\n", + "2024-10-23 21:15:01,844, data_manager.py, 108, INFO, Getting stock price data for CBRE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:01,844, data_manager.py, 108, INFO, Getting stock price data for CBRE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:02,248, data_manager.py, 82, INFO, Saving data for CBRE by year\n", + "2024-10-23 21:15:02,248, data_manager.py, 82, INFO, Saving data for CBRE by year\n", + "2024-10-23 21:15:03,210, data_manager.py, 73, INFO, Processing ticker CDW\n", + "2024-10-23 21:15:03,210, data_manager.py, 73, INFO, Processing ticker CDW\n", + "2024-10-23 21:15:03,211, data_manager.py, 108, INFO, Getting stock price data for CDW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:03,211, data_manager.py, 108, INFO, Getting stock price data for CDW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:03,742, data_manager.py, 82, INFO, Saving data for CDW by year\n", + "2024-10-23 21:15:03,742, data_manager.py, 82, INFO, Saving data for CDW by year\n", + "2024-10-23 21:15:04,504, data_manager.py, 73, INFO, Processing ticker CE\n", + "2024-10-23 21:15:04,504, data_manager.py, 73, INFO, Processing ticker CE\n", + "2024-10-23 21:15:04,506, data_manager.py, 108, INFO, Getting stock price data for CE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:04,506, data_manager.py, 108, INFO, Getting stock price data for CE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:04,917, data_manager.py, 82, INFO, Saving data for CE by year\n", + "2024-10-23 21:15:04,917, data_manager.py, 82, INFO, Saving data for CE by year\n", + "2024-10-23 21:15:05,948, data_manager.py, 73, INFO, Processing ticker COR\n", + "2024-10-23 21:15:05,948, data_manager.py, 73, INFO, Processing ticker COR\n", + "2024-10-23 21:15:05,950, data_manager.py, 108, INFO, Getting stock price data for COR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:05,950, data_manager.py, 108, INFO, Getting stock price data for COR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:06,311, data_manager.py, 82, INFO, Saving data for COR by year\n", + "2024-10-23 21:15:06,311, data_manager.py, 82, INFO, Saving data for COR by year\n", + "2024-10-23 21:15:07,516, data_manager.py, 73, INFO, Processing ticker CNC\n", + "2024-10-23 21:15:07,516, data_manager.py, 73, INFO, Processing ticker CNC\n", + "2024-10-23 21:15:07,518, data_manager.py, 108, INFO, Getting stock price data for CNC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:07,518, data_manager.py, 108, INFO, Getting stock price data for CNC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:07,853, data_manager.py, 82, INFO, Saving data for CNC by year\n", + "2024-10-23 21:15:07,853, data_manager.py, 82, INFO, Saving data for CNC by year\n", + "2024-10-23 21:15:09,147, data_manager.py, 73, INFO, Processing ticker CNP\n", + "2024-10-23 21:15:09,147, data_manager.py, 73, INFO, Processing ticker CNP\n", + "2024-10-23 21:15:09,149, data_manager.py, 108, INFO, Getting stock price data for CNP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:09,149, data_manager.py, 108, INFO, Getting stock price data for CNP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:09,481, data_manager.py, 82, INFO, Saving data for CNP by year\n", + "2024-10-23 21:15:09,481, data_manager.py, 82, INFO, Saving data for CNP by year\n", + "2024-10-23 21:14:49,735, data_manager.py, 73, INFO, Processing ticker CF\n", + "2024-10-23 21:14:49,735, data_manager.py, 73, INFO, Processing ticker CF\n", + "2024-10-23 21:14:49,736, data_manager.py, 108, INFO, Getting stock price data for CF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:49,736, data_manager.py, 108, INFO, Getting stock price data for CF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:50,037, data_manager.py, 82, INFO, Saving data for CF by year\n", + "2024-10-23 21:14:50,037, data_manager.py, 82, INFO, Saving data for CF by year\n", + "2024-10-23 21:14:51,010, data_manager.py, 73, INFO, Processing ticker CHRW\n", + "2024-10-23 21:14:51,010, data_manager.py, 73, INFO, Processing ticker CHRW\n", + "2024-10-23 21:14:51,011, data_manager.py, 108, INFO, Getting stock price data for CHRW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:51,011, data_manager.py, 108, INFO, Getting stock price data for CHRW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:51,287, data_manager.py, 82, INFO, Saving data for CHRW by year\n", + "2024-10-23 21:14:51,287, data_manager.py, 82, INFO, Saving data for CHRW by year\n", + "2024-10-23 21:14:52,695, data_manager.py, 73, INFO, Processing ticker CRL\n", + "2024-10-23 21:14:52,695, data_manager.py, 73, INFO, Processing ticker CRL\n", + "2024-10-23 21:14:52,698, data_manager.py, 108, INFO, Getting stock price data for CRL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:52,698, data_manager.py, 108, INFO, Getting stock price data for CRL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:53,013, data_manager.py, 82, INFO, Saving data for CRL by year\n", + "2024-10-23 21:14:53,013, data_manager.py, 82, INFO, Saving data for CRL by year\n", + "2024-10-23 21:14:54,375, data_manager.py, 73, INFO, Processing ticker SCHW\n", + "2024-10-23 21:14:54,375, data_manager.py, 73, INFO, Processing ticker SCHW\n", + "2024-10-23 21:14:54,377, data_manager.py, 108, INFO, Getting stock price data for SCHW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:54,377, data_manager.py, 108, INFO, Getting stock price data for SCHW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:54,765, data_manager.py, 82, INFO, Saving data for SCHW by year\n", + "2024-10-23 21:14:54,765, data_manager.py, 82, INFO, Saving data for SCHW by year\n", + "2024-10-23 21:14:56,053, data_manager.py, 73, INFO, Processing ticker CHTR\n", + "2024-10-23 21:14:56,053, data_manager.py, 73, INFO, Processing ticker CHTR\n", + "2024-10-23 21:14:56,054, data_manager.py, 108, INFO, Getting stock price data for CHTR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:56,054, data_manager.py, 108, INFO, Getting stock price data for CHTR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:56,265, data_manager.py, 82, INFO, Saving data for CHTR by year\n", + "2024-10-23 21:14:56,265, data_manager.py, 82, INFO, Saving data for CHTR by year\n", + "2024-10-23 21:14:56,962, data_manager.py, 73, INFO, Processing ticker CVX\n", + "2024-10-23 21:14:56,962, data_manager.py, 73, INFO, Processing ticker CVX\n", + "2024-10-23 21:14:56,963, data_manager.py, 108, INFO, Getting stock price data for CVX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:56,963, data_manager.py, 108, INFO, Getting stock price data for CVX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:57,332, data_manager.py, 82, INFO, Saving data for CVX by year\n", + "2024-10-23 21:14:57,332, data_manager.py, 82, INFO, Saving data for CVX by year\n", + "2024-10-23 21:14:58,638, data_manager.py, 73, INFO, Processing ticker CMG\n", + "2024-10-23 21:14:58,638, data_manager.py, 73, INFO, Processing ticker CMG\n", + "2024-10-23 21:14:58,640, data_manager.py, 108, INFO, Getting stock price data for CMG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:58,640, data_manager.py, 108, INFO, Getting stock price data for CMG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:58,923, data_manager.py, 82, INFO, Saving data for CMG by year\n", + "2024-10-23 21:14:58,923, data_manager.py, 82, INFO, Saving data for CMG by year\n", + "2024-10-23 21:14:59,771, data_manager.py, 73, INFO, Processing ticker CB\n", + "2024-10-23 21:14:59,771, data_manager.py, 73, INFO, Processing ticker CB\n", + "2024-10-23 21:14:59,772, data_manager.py, 108, INFO, Getting stock price data for CB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:14:59,772, data_manager.py, 108, INFO, Getting stock price data for CB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:14:59,990, data_manager.py, 82, INFO, Saving data for CB by year\n", + "2024-10-23 21:14:59,990, data_manager.py, 82, INFO, Saving data for CB by year\n", + "2024-10-23 21:15:01,182, data_manager.py, 73, INFO, Processing ticker CHD\n", + "2024-10-23 21:15:01,182, data_manager.py, 73, INFO, Processing ticker CHD\n", + "2024-10-23 21:15:01,184, data_manager.py, 108, INFO, Getting stock price data for CHD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:01,184, data_manager.py, 108, INFO, Getting stock price data for CHD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:01,468, data_manager.py, 82, INFO, Saving data for CHD by year\n", + "2024-10-23 21:15:01,468, data_manager.py, 82, INFO, Saving data for CHD by year\n", + "2024-10-23 21:15:02,605, data_manager.py, 73, INFO, Processing ticker CI\n", + "2024-10-23 21:15:02,605, data_manager.py, 73, INFO, Processing ticker CI\n", + "2024-10-23 21:15:02,606, data_manager.py, 108, INFO, Getting stock price data for CI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:02,606, data_manager.py, 108, INFO, Getting stock price data for CI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:02,975, data_manager.py, 82, INFO, Saving data for CI by year\n", + "2024-10-23 21:15:02,975, data_manager.py, 82, INFO, Saving data for CI by year\n", + "2024-10-23 21:15:04,211, data_manager.py, 73, INFO, Processing ticker CINF\n", + "2024-10-23 21:15:04,211, data_manager.py, 73, INFO, Processing ticker CINF\n", + "2024-10-23 21:15:04,213, data_manager.py, 108, INFO, Getting stock price data for CINF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:04,213, data_manager.py, 108, INFO, Getting stock price data for CINF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:04,521, data_manager.py, 82, INFO, Saving data for CINF by year\n", + "2024-10-23 21:15:04,521, data_manager.py, 82, INFO, Saving data for CINF by year\n", + "2024-10-23 21:15:05,815, data_manager.py, 73, INFO, Processing ticker CTAS\n", + "2024-10-23 21:15:05,815, data_manager.py, 73, INFO, Processing ticker CTAS\n", + "2024-10-23 21:15:05,817, data_manager.py, 108, INFO, Getting stock price data for CTAS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:05,817, data_manager.py, 108, INFO, Getting stock price data for CTAS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:06,159, data_manager.py, 82, INFO, Saving data for CTAS by year\n", + "2024-10-23 21:15:06,159, data_manager.py, 82, INFO, Saving data for CTAS by year\n", + "2024-10-23 21:15:07,491, data_manager.py, 73, INFO, Processing ticker CSCO\n", + "2024-10-23 21:15:07,491, data_manager.py, 73, INFO, Processing ticker CSCO\n", + "2024-10-23 21:15:07,492, data_manager.py, 108, INFO, Getting stock price data for CSCO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:07,492, data_manager.py, 108, INFO, Getting stock price data for CSCO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:07,742, data_manager.py, 82, INFO, Saving data for CSCO by year\n", + "2024-10-23 21:15:07,742, data_manager.py, 82, INFO, Saving data for CSCO by year\n", + "2024-10-23 21:15:08,936, data_manager.py, 73, INFO, Processing ticker C\n", + "2024-10-23 21:15:08,936, data_manager.py, 73, INFO, Processing ticker C\n", + "2024-10-23 21:15:08,938, data_manager.py, 108, INFO, Getting stock price data for C from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:08,938, data_manager.py, 108, INFO, Getting stock price data for C from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:09,194, data_manager.py, 82, INFO, Saving data for C by year\n", + "2024-10-23 21:15:09,194, data_manager.py, 82, INFO, Saving data for C by year\n", + "2024-10-23 21:15:10,479, data_manager.py, 73, INFO, Processing ticker CFG\n", + "2024-10-23 21:15:10,479, data_manager.py, 73, INFO, Processing ticker CFG\n", + "2024-10-23 21:15:10,481, data_manager.py, 108, INFO, Getting stock price data for CFG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:10,481, data_manager.py, 108, INFO, Getting stock price data for CFG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:10,636, data_manager.py, 82, INFO, Saving data for CFG by year\n", + "2024-10-23 21:15:10,636, data_manager.py, 82, INFO, Saving data for CFG by year\n", + "2024-10-23 21:15:11,186, data_manager.py, 73, INFO, Processing ticker CLX\n", + "2024-10-23 21:15:11,186, data_manager.py, 73, INFO, Processing ticker CLX\n", + "2024-10-23 21:15:11,187, data_manager.py, 108, INFO, Getting stock price data for CLX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:11,187, data_manager.py, 108, INFO, Getting stock price data for CLX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:11,443, data_manager.py, 82, INFO, Saving data for CLX by year\n", + "2024-10-23 21:15:11,443, data_manager.py, 82, INFO, Saving data for CLX by year\n", + "2024-10-23 21:15:12,592, data_manager.py, 73, INFO, Processing ticker CME\n", + "2024-10-23 21:15:12,592, data_manager.py, 73, INFO, Processing ticker CME\n", + "2024-10-23 21:15:12,594, data_manager.py, 108, INFO, Getting stock price data for CME from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:12,594, data_manager.py, 108, INFO, Getting stock price data for CME from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:12,848, data_manager.py, 82, INFO, Saving data for CME by year\n", + "2024-10-23 21:15:12,848, data_manager.py, 82, INFO, Saving data for CME by year\n", + "2024-10-23 21:15:13,982, data_manager.py, 73, INFO, Processing ticker CMS\n", + "2024-10-23 21:15:13,982, data_manager.py, 73, INFO, Processing ticker CMS\n", + "2024-10-23 21:15:13,983, data_manager.py, 108, INFO, Getting stock price data for CMS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:13,983, data_manager.py, 108, INFO, Getting stock price data for CMS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:14,304, data_manager.py, 82, INFO, Saving data for CMS by year\n", + "2024-10-23 21:15:14,304, data_manager.py, 82, INFO, Saving data for CMS by year\n", + "2024-10-23 21:15:15,488, data_manager.py, 73, INFO, Processing ticker KO\n", + "2024-10-23 21:15:15,488, data_manager.py, 73, INFO, Processing ticker KO\n", + "2024-10-23 21:15:15,490, data_manager.py, 108, INFO, Getting stock price data for KO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:15,490, data_manager.py, 108, INFO, Getting stock price data for KO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:15,856, data_manager.py, 82, INFO, Saving data for KO by year\n", + "2024-10-23 21:15:15,856, data_manager.py, 82, INFO, Saving data for KO by year\n", + "2024-10-23 21:15:17,067, data_manager.py, 73, INFO, Processing ticker CTSH\n", + "2024-10-23 21:15:17,067, data_manager.py, 73, INFO, Processing ticker CTSH\n", + "2024-10-23 21:15:17,069, data_manager.py, 108, INFO, Getting stock price data for CTSH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:17,069, data_manager.py, 108, INFO, Getting stock price data for CTSH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:17,282, data_manager.py, 82, INFO, Saving data for CTSH by year\n", + "2024-10-23 21:15:17,282, data_manager.py, 82, INFO, Saving data for CTSH by year\n", + "2024-10-23 21:15:18,458, data_manager.py, 73, INFO, Processing ticker CL\n", + "2024-10-23 21:15:18,458, data_manager.py, 73, INFO, Processing ticker CL\n", + "2024-10-23 21:15:18,461, data_manager.py, 108, INFO, Getting stock price data for CL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:18,461, data_manager.py, 108, INFO, Getting stock price data for CL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:18,744, data_manager.py, 82, INFO, Saving data for CL by year\n", + "2024-10-23 21:15:18,744, data_manager.py, 82, INFO, Saving data for CL by year\n", + "2024-10-23 21:15:20,054, data_manager.py, 73, INFO, Processing ticker CMCSA\n", + "2024-10-23 21:15:20,054, data_manager.py, 73, INFO, Processing ticker CMCSA\n", + "2024-10-23 21:15:20,056, data_manager.py, 108, INFO, Getting stock price data for CMCSA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:20,056, data_manager.py, 108, INFO, Getting stock price data for CMCSA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:20,311, data_manager.py, 82, INFO, Saving data for CMCSA by year\n", + "2024-10-23 21:15:20,311, data_manager.py, 82, INFO, Saving data for CMCSA by year\n", + "2024-10-23 21:15:21,613, data_manager.py, 73, INFO, Processing ticker CMA\n", + "2024-10-23 21:15:21,613, data_manager.py, 73, INFO, Processing ticker CMA\n", + "2024-10-23 21:15:21,614, data_manager.py, 108, INFO, Getting stock price data for CMA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:21,614, data_manager.py, 108, INFO, Getting stock price data for CMA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:21,830, data_manager.py, 82, INFO, Saving data for CMA by year\n", + "2024-10-23 21:15:21,830, data_manager.py, 82, INFO, Saving data for CMA by year\n", + "2024-10-23 21:15:22,998, data_manager.py, 73, INFO, Processing ticker CAG\n", + "2024-10-23 21:15:22,998, data_manager.py, 73, INFO, Processing ticker CAG\n", + "2024-10-23 21:15:23,000, data_manager.py, 108, INFO, Getting stock price data for CAG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:23,000, data_manager.py, 108, INFO, Getting stock price data for CAG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:23,299, data_manager.py, 82, INFO, Saving data for CAG by year\n", + "2024-10-23 21:15:23,299, data_manager.py, 82, INFO, Saving data for CAG by year\n", + "2024-10-23 21:15:24,478, data_manager.py, 73, INFO, Processing ticker COP\n", + "2024-10-23 21:15:24,478, data_manager.py, 73, INFO, Processing ticker COP\n", + "2024-10-23 21:15:24,480, data_manager.py, 108, INFO, Getting stock price data for COP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:24,480, data_manager.py, 108, INFO, Getting stock price data for COP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:24,806, data_manager.py, 82, INFO, Saving data for COP by year\n", + "2024-10-23 21:15:24,806, data_manager.py, 82, INFO, Saving data for COP by year\n", + "2024-10-23 21:15:26,236, data_manager.py, 73, INFO, Processing ticker ED\n", + "2024-10-23 21:15:26,236, data_manager.py, 73, INFO, Processing ticker ED\n", + "2024-10-23 21:15:26,238, data_manager.py, 108, INFO, Getting stock price data for ED from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:26,238, data_manager.py, 108, INFO, Getting stock price data for ED from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:26,705, data_manager.py, 82, INFO, Saving data for ED by year\n", + "2024-10-23 21:15:26,705, data_manager.py, 82, INFO, Saving data for ED by year\n", + "2024-10-23 21:15:27,951, data_manager.py, 73, INFO, Processing ticker STZ\n", + "2024-10-23 21:15:27,951, data_manager.py, 73, INFO, Processing ticker STZ\n", + "2024-10-23 21:15:27,953, data_manager.py, 108, INFO, Getting stock price data for STZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:27,953, data_manager.py, 108, INFO, Getting stock price data for STZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:28,186, data_manager.py, 82, INFO, Saving data for STZ by year\n", + "2024-10-23 21:15:28,186, data_manager.py, 82, INFO, Saving data for STZ by year\n", + "2024-10-23 21:15:29,551, data_manager.py, 73, INFO, Processing ticker CEG\n", + "2024-10-23 21:15:29,551, data_manager.py, 73, INFO, Processing ticker CEG\n", + "2024-10-23 21:15:29,553, data_manager.py, 108, INFO, Getting stock price data for CEG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:29,553, data_manager.py, 108, INFO, Getting stock price data for CEG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:29,689, data_manager.py, 82, INFO, Saving data for CEG by year\n", + "2024-10-23 21:15:29,689, data_manager.py, 82, INFO, Saving data for CEG by year\n", + "2024-10-23 21:15:29,841, data_manager.py, 73, INFO, Processing ticker COO\n", + "2024-10-23 21:15:29,841, data_manager.py, 73, INFO, Processing ticker COO\n", + "2024-10-23 21:15:29,843, data_manager.py, 108, INFO, Getting stock price data for COO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:29,843, data_manager.py, 108, INFO, Getting stock price data for COO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:30,127, data_manager.py, 82, INFO, Saving data for COO by year\n", + "2024-10-23 21:15:30,127, data_manager.py, 82, INFO, Saving data for COO by year\n", + "2024-10-23 21:15:31,463, data_manager.py, 73, INFO, Processing ticker CPRT\n", + "2024-10-23 21:15:31,463, data_manager.py, 73, INFO, Processing ticker CPRT\n", + "2024-10-23 21:15:31,464, data_manager.py, 108, INFO, Getting stock price data for CPRT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:31,464, data_manager.py, 108, INFO, Getting stock price data for CPRT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:31,710, data_manager.py, 82, INFO, Saving data for CPRT by year\n", + "2024-10-23 21:15:31,710, data_manager.py, 82, INFO, Saving data for CPRT by year\n", + "2024-10-23 21:15:32,900, data_manager.py, 73, INFO, Processing ticker GLW\n", + "2024-10-23 21:15:32,900, data_manager.py, 73, INFO, Processing ticker GLW\n", + "2024-10-23 21:15:32,902, data_manager.py, 108, INFO, Getting stock price data for GLW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:32,902, data_manager.py, 108, INFO, Getting stock price data for GLW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:33,227, data_manager.py, 82, INFO, Saving data for GLW by year\n", + "2024-10-23 21:15:33,227, data_manager.py, 82, INFO, Saving data for GLW by year\n", + "2024-10-23 21:15:34,296, data_manager.py, 73, INFO, Processing ticker CTVA\n", + "2024-10-23 21:15:34,296, data_manager.py, 73, INFO, Processing ticker CTVA\n", + "2024-10-23 21:15:34,297, data_manager.py, 108, INFO, Getting stock price data for CTVA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:34,297, data_manager.py, 108, INFO, Getting stock price data for CTVA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:34,454, data_manager.py, 82, INFO, Saving data for CTVA by year\n", + "2024-10-23 21:15:34,454, data_manager.py, 82, INFO, Saving data for CTVA by year\n", + "2024-10-23 21:15:34,688, data_manager.py, 73, INFO, Processing ticker CSGP\n", + "2024-10-23 21:15:34,688, data_manager.py, 73, INFO, Processing ticker CSGP\n", + "2024-10-23 21:15:34,690, data_manager.py, 108, INFO, Getting stock price data for CSGP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:34,690, data_manager.py, 108, INFO, Getting stock price data for CSGP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:34,923, data_manager.py, 82, INFO, Saving data for CSGP by year\n", + "2024-10-23 21:15:34,923, data_manager.py, 82, INFO, Saving data for CSGP by year\n", + "2024-10-23 21:15:36,148, data_manager.py, 73, INFO, Processing ticker COST\n", + "2024-10-23 21:15:36,148, data_manager.py, 73, INFO, Processing ticker COST\n", + "2024-10-23 21:15:36,151, data_manager.py, 108, INFO, Getting stock price data for COST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:36,151, data_manager.py, 108, INFO, Getting stock price data for COST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:36,456, data_manager.py, 82, INFO, Saving data for COST by year\n", + "2024-10-23 21:15:36,456, data_manager.py, 82, INFO, Saving data for COST by year\n", + "2024-10-23 21:15:37,755, data_manager.py, 73, INFO, Processing ticker CTRA\n", + "2024-10-23 21:15:37,755, data_manager.py, 73, INFO, Processing ticker CTRA\n", + "2024-10-23 21:15:37,757, data_manager.py, 108, INFO, Getting stock price data for CTRA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:37,757, data_manager.py, 108, INFO, Getting stock price data for CTRA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:38,106, data_manager.py, 82, INFO, Saving data for CTRA by year\n", + "2024-10-23 21:15:38,106, data_manager.py, 82, INFO, Saving data for CTRA by year\n", + "2024-10-23 21:15:39,337, data_manager.py, 73, INFO, Processing ticker CCI\n", + "2024-10-23 21:15:39,337, data_manager.py, 73, INFO, Processing ticker CCI\n", + "2024-10-23 21:15:39,339, data_manager.py, 108, INFO, Getting stock price data for CCI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:39,339, data_manager.py, 108, INFO, Getting stock price data for CCI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:39,590, data_manager.py, 82, INFO, Saving data for CCI by year\n", + "2024-10-23 21:15:39,590, data_manager.py, 82, INFO, Saving data for CCI by year\n", + "2024-10-23 21:15:40,785, data_manager.py, 73, INFO, Processing ticker CSX\n", + "2024-10-23 21:15:40,785, data_manager.py, 73, INFO, Processing ticker CSX\n", + "2024-10-23 21:15:40,786, data_manager.py, 108, INFO, Getting stock price data for CSX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:40,786, data_manager.py, 108, INFO, Getting stock price data for CSX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:41,111, data_manager.py, 82, INFO, Saving data for CSX by year\n", + "2024-10-23 21:15:41,111, data_manager.py, 82, INFO, Saving data for CSX by year\n", + "2024-10-23 21:15:42,433, data_manager.py, 73, INFO, Processing ticker CMI\n", + "2024-10-23 21:15:42,433, data_manager.py, 73, INFO, Processing ticker CMI\n", + "2024-10-23 21:15:42,435, data_manager.py, 108, INFO, Getting stock price data for CMI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:42,435, data_manager.py, 108, INFO, Getting stock price data for CMI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:42,851, data_manager.py, 82, INFO, Saving data for CMI by year\n", + "2024-10-23 21:15:42,851, data_manager.py, 82, INFO, Saving data for CMI by year\n", + "2024-10-23 21:15:44,063, data_manager.py, 73, INFO, Processing ticker CVS\n", + "2024-10-23 21:15:44,063, data_manager.py, 73, INFO, Processing ticker CVS\n", + "2024-10-23 21:15:44,064, data_manager.py, 108, INFO, Getting stock price data for CVS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:44,064, data_manager.py, 108, INFO, Getting stock price data for CVS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:44,505, data_manager.py, 82, INFO, Saving data for CVS by year\n", + "2024-10-23 21:15:44,505, data_manager.py, 82, INFO, Saving data for CVS by year\n", + "2024-10-23 21:15:45,799, data_manager.py, 73, INFO, Processing ticker DHR\n", + "2024-10-23 21:15:45,799, data_manager.py, 73, INFO, Processing ticker DHR\n", + "2024-10-23 21:15:45,801, data_manager.py, 108, INFO, Getting stock price data for DHR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:45,801, data_manager.py, 108, INFO, Getting stock price data for DHR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:46,202, data_manager.py, 82, INFO, Saving data for DHR by year\n", + "2024-10-23 21:15:46,202, data_manager.py, 82, INFO, Saving data for DHR by year\n", + "2024-10-23 21:15:47,522, data_manager.py, 73, INFO, Processing ticker DRI\n", + "2024-10-23 21:15:47,522, data_manager.py, 73, INFO, Processing ticker DRI\n", + "2024-10-23 21:15:47,524, data_manager.py, 108, INFO, Getting stock price data for DRI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:47,524, data_manager.py, 108, INFO, Getting stock price data for DRI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:47,864, data_manager.py, 82, INFO, Saving data for DRI by year\n", + "2024-10-23 21:15:47,864, data_manager.py, 82, INFO, Saving data for DRI by year\n", + "2024-10-23 21:15:49,109, data_manager.py, 73, INFO, Processing ticker DVA\n", + "2024-10-23 21:15:49,109, data_manager.py, 73, INFO, Processing ticker DVA\n", + "2024-10-23 21:15:49,111, data_manager.py, 108, INFO, Getting stock price data for DVA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:49,111, data_manager.py, 108, INFO, Getting stock price data for DVA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:49,360, data_manager.py, 82, INFO, Saving data for DVA by year\n", + "2024-10-23 21:15:49,360, data_manager.py, 82, INFO, Saving data for DVA by year\n", + "2024-10-23 21:15:50,610, data_manager.py, 73, INFO, Processing ticker DAY\n", + "2024-10-23 21:15:50,610, data_manager.py, 73, INFO, Processing ticker DAY\n", + "2024-10-23 21:15:50,611, data_manager.py, 108, INFO, Getting stock price data for DAY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:50,611, data_manager.py, 108, INFO, Getting stock price data for DAY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:50,748, data_manager.py, 82, INFO, Saving data for DAY by year\n", + "2024-10-23 21:15:50,748, data_manager.py, 82, INFO, Saving data for DAY by year\n", + "2024-10-23 21:15:51,079, data_manager.py, 73, INFO, Processing ticker DE\n", + "2024-10-23 21:15:51,079, data_manager.py, 73, INFO, Processing ticker DE\n", + "2024-10-23 21:15:51,081, data_manager.py, 108, INFO, Getting stock price data for DE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:51,081, data_manager.py, 108, INFO, Getting stock price data for DE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:51,466, data_manager.py, 82, INFO, Saving data for DE by year\n", + "2024-10-23 21:15:51,466, data_manager.py, 82, INFO, Saving data for DE by year\n", + "2024-10-23 21:15:52,750, data_manager.py, 73, INFO, Processing ticker DAL\n", + "2024-10-23 21:15:52,750, data_manager.py, 73, INFO, Processing ticker DAL\n", + "2024-10-23 21:15:52,751, data_manager.py, 108, INFO, Getting stock price data for DAL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:52,751, data_manager.py, 108, INFO, Getting stock price data for DAL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:53,054, data_manager.py, 82, INFO, Saving data for DAL by year\n", + "2024-10-23 21:15:53,054, data_manager.py, 82, INFO, Saving data for DAL by year\n", + "2024-10-23 21:15:53,931, data_manager.py, 73, INFO, Processing ticker XRAY\n", + "2024-10-23 21:15:53,931, data_manager.py, 73, INFO, Processing ticker XRAY\n", + "2024-10-23 21:15:53,932, data_manager.py, 108, INFO, Getting stock price data for XRAY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:53,932, data_manager.py, 108, INFO, Getting stock price data for XRAY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:54,160, data_manager.py, 82, INFO, Saving data for XRAY by year\n", + "2024-10-23 21:15:54,160, data_manager.py, 82, INFO, Saving data for XRAY by year\n", + "2024-10-23 21:15:55,428, data_manager.py, 73, INFO, Processing ticker DVN\n", + "2024-10-23 21:15:55,428, data_manager.py, 73, INFO, Processing ticker DVN\n", + "2024-10-23 21:15:55,429, data_manager.py, 108, INFO, Getting stock price data for DVN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:55,429, data_manager.py, 108, INFO, Getting stock price data for DVN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:55,675, data_manager.py, 82, INFO, Saving data for DVN by year\n", + "2024-10-23 21:15:55,675, data_manager.py, 82, INFO, Saving data for DVN by year\n", + "2024-10-23 21:15:56,886, data_manager.py, 73, INFO, Processing ticker DXCM\n", + "2024-10-23 21:15:56,886, data_manager.py, 73, INFO, Processing ticker DXCM\n", + "2024-10-23 21:15:56,888, data_manager.py, 108, INFO, Getting stock price data for DXCM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:56,888, data_manager.py, 108, INFO, Getting stock price data for DXCM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:57,083, data_manager.py, 82, INFO, Saving data for DXCM by year\n", + "2024-10-23 21:15:57,083, data_manager.py, 82, INFO, Saving data for DXCM by year\n", + "2024-10-23 21:15:58,249, data_manager.py, 73, INFO, Processing ticker FANG\n", + "2024-10-23 21:15:58,249, data_manager.py, 73, INFO, Processing ticker FANG\n", + "2024-10-23 21:15:58,250, data_manager.py, 108, INFO, Getting stock price data for FANG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:58,250, data_manager.py, 108, INFO, Getting stock price data for FANG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:58,554, data_manager.py, 82, INFO, Saving data for FANG by year\n", + "2024-10-23 21:15:58,554, data_manager.py, 82, INFO, Saving data for FANG by year\n", + "2024-10-23 21:15:59,304, data_manager.py, 73, INFO, Processing ticker DLR\n", + "2024-10-23 21:15:59,304, data_manager.py, 73, INFO, Processing ticker DLR\n", + "2024-10-23 21:15:59,305, data_manager.py, 108, INFO, Getting stock price data for DLR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:15:59,305, data_manager.py, 108, INFO, Getting stock price data for DLR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:15:59,570, data_manager.py, 82, INFO, Saving data for DLR by year\n", + "2024-10-23 21:15:59,570, data_manager.py, 82, INFO, Saving data for DLR by year\n", + "2024-10-23 21:16:00,646, data_manager.py, 73, INFO, Processing ticker DFS\n", + "2024-10-23 21:16:00,646, data_manager.py, 73, INFO, Processing ticker DFS\n", + "2024-10-23 21:16:00,647, data_manager.py, 108, INFO, Getting stock price data for DFS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:00,647, data_manager.py, 108, INFO, Getting stock price data for DFS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:00,839, data_manager.py, 82, INFO, Saving data for DFS by year\n", + "2024-10-23 21:16:00,839, data_manager.py, 82, INFO, Saving data for DFS by year\n", + "2024-10-23 21:16:01,807, data_manager.py, 73, INFO, Processing ticker DG\n", + "2024-10-23 21:16:01,807, data_manager.py, 73, INFO, Processing ticker DG\n", + "2024-10-23 21:16:01,810, data_manager.py, 108, INFO, Getting stock price data for DG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:01,810, data_manager.py, 108, INFO, Getting stock price data for DG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:01,972, data_manager.py, 82, INFO, Saving data for DG by year\n", + "2024-10-23 21:16:01,972, data_manager.py, 82, INFO, Saving data for DG by year\n", + "2024-10-23 21:16:02,762, data_manager.py, 73, INFO, Processing ticker DLTR\n", + "2024-10-23 21:16:02,762, data_manager.py, 73, INFO, Processing ticker DLTR\n", + "2024-10-23 21:16:02,764, data_manager.py, 108, INFO, Getting stock price data for DLTR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:02,764, data_manager.py, 108, INFO, Getting stock price data for DLTR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:02,932, data_manager.py, 82, INFO, Saving data for DLTR by year\n", + "2024-10-23 21:16:02,932, data_manager.py, 82, INFO, Saving data for DLTR by year\n", + "2024-10-23 21:16:04,237, data_manager.py, 73, INFO, Processing ticker D\n", + "2024-10-23 21:16:04,237, data_manager.py, 73, INFO, Processing ticker D\n", + "2024-10-23 21:16:04,239, data_manager.py, 108, INFO, Getting stock price data for D from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:04,239, data_manager.py, 108, INFO, Getting stock price data for D from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:04,530, data_manager.py, 82, INFO, Saving data for D by year\n", + "2024-10-23 21:16:04,530, data_manager.py, 82, INFO, Saving data for D by year\n", + "2024-10-23 21:16:06,012, data_manager.py, 73, INFO, Processing ticker DPZ\n", + "2024-10-23 21:16:06,012, data_manager.py, 73, INFO, Processing ticker DPZ\n", + "2024-10-23 21:16:06,014, data_manager.py, 108, INFO, Getting stock price data for DPZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:06,014, data_manager.py, 108, INFO, Getting stock price data for DPZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:06,291, data_manager.py, 82, INFO, Saving data for DPZ by year\n", + "2024-10-23 21:16:06,291, data_manager.py, 82, INFO, Saving data for DPZ by year\n", + "2024-10-23 21:16:07,455, data_manager.py, 73, INFO, Processing ticker DOV\n", + "2024-10-23 21:16:07,455, data_manager.py, 73, INFO, Processing ticker DOV\n", + "2024-10-23 21:16:07,458, data_manager.py, 108, INFO, Getting stock price data for DOV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:07,458, data_manager.py, 108, INFO, Getting stock price data for DOV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:07,862, data_manager.py, 82, INFO, Saving data for DOV by year\n", + "2024-10-23 21:16:07,862, data_manager.py, 82, INFO, Saving data for DOV by year\n", + "2024-10-23 21:16:09,278, data_manager.py, 73, INFO, Processing ticker DOW\n", + "2024-10-23 21:16:09,278, data_manager.py, 73, INFO, Processing ticker DOW\n", + "2024-10-23 21:16:09,280, data_manager.py, 108, INFO, Getting stock price data for DOW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:09,280, data_manager.py, 108, INFO, Getting stock price data for DOW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:09,418, data_manager.py, 82, INFO, Saving data for DOW by year\n", + "2024-10-23 21:16:09,418, data_manager.py, 82, INFO, Saving data for DOW by year\n", + "2024-10-23 21:16:09,769, data_manager.py, 73, INFO, Processing ticker DHI\n", + "2024-10-23 21:16:09,769, data_manager.py, 73, INFO, Processing ticker DHI\n", + "2024-10-23 21:16:09,770, data_manager.py, 108, INFO, Getting stock price data for DHI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:09,770, data_manager.py, 108, INFO, Getting stock price data for DHI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:10,003, data_manager.py, 82, INFO, Saving data for DHI by year\n", + "2024-10-23 21:16:10,003, data_manager.py, 82, INFO, Saving data for DHI by year\n", + "2024-10-23 21:16:11,534, data_manager.py, 73, INFO, Processing ticker DTE\n", + "2024-10-23 21:16:11,534, data_manager.py, 73, INFO, Processing ticker DTE\n", + "2024-10-23 21:16:11,536, data_manager.py, 108, INFO, Getting stock price data for DTE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:11,536, data_manager.py, 108, INFO, Getting stock price data for DTE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:12,152, data_manager.py, 82, INFO, Saving data for DTE by year\n", + "2024-10-23 21:16:12,152, data_manager.py, 82, INFO, Saving data for DTE by year\n", + "2024-10-23 21:16:13,465, data_manager.py, 73, INFO, Processing ticker DUK\n", + "2024-10-23 21:16:13,465, data_manager.py, 73, INFO, Processing ticker DUK\n", + "2024-10-23 21:16:13,467, data_manager.py, 108, INFO, Getting stock price data for DUK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:13,467, data_manager.py, 108, INFO, Getting stock price data for DUK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:13,812, data_manager.py, 82, INFO, Saving data for DUK by year\n", + "2024-10-23 21:16:13,812, data_manager.py, 82, INFO, Saving data for DUK by year\n", + "2024-10-23 21:16:15,206, data_manager.py, 73, INFO, Processing ticker DD\n", + "2024-10-23 21:16:15,206, data_manager.py, 73, INFO, Processing ticker DD\n", + "2024-10-23 21:16:15,208, data_manager.py, 108, INFO, Getting stock price data for DD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:15,208, data_manager.py, 108, INFO, Getting stock price data for DD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:15,576, data_manager.py, 82, INFO, Saving data for DD by year\n", + "2024-10-23 21:16:15,576, data_manager.py, 82, INFO, Saving data for DD by year\n", + "2024-10-23 21:16:17,060, data_manager.py, 73, INFO, Processing ticker EMN\n", + "2024-10-23 21:16:17,060, data_manager.py, 73, INFO, Processing ticker EMN\n", + "2024-10-23 21:16:17,063, data_manager.py, 108, INFO, Getting stock price data for EMN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:17,063, data_manager.py, 108, INFO, Getting stock price data for EMN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:17,351, data_manager.py, 82, INFO, Saving data for EMN by year\n", + "2024-10-23 21:16:17,351, data_manager.py, 82, INFO, Saving data for EMN by year\n", + "2024-10-23 21:16:18,591, data_manager.py, 73, INFO, Processing ticker ETN\n", + "2024-10-23 21:16:18,591, data_manager.py, 73, INFO, Processing ticker ETN\n", + "2024-10-23 21:16:18,593, data_manager.py, 108, INFO, Getting stock price data for ETN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:18,593, data_manager.py, 108, INFO, Getting stock price data for ETN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:19,003, data_manager.py, 82, INFO, Saving data for ETN by year\n", + "2024-10-23 21:16:19,003, data_manager.py, 82, INFO, Saving data for ETN by year\n", + "2024-10-23 21:16:20,469, data_manager.py, 73, INFO, Processing ticker EBAY\n", + "2024-10-23 21:16:20,469, data_manager.py, 73, INFO, Processing ticker EBAY\n", + "2024-10-23 21:16:20,471, data_manager.py, 108, INFO, Getting stock price data for EBAY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:20,471, data_manager.py, 108, INFO, Getting stock price data for EBAY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:20,883, data_manager.py, 82, INFO, Saving data for EBAY by year\n", + "2024-10-23 21:16:20,883, data_manager.py, 82, INFO, Saving data for EBAY by year\n", + "2024-10-23 21:16:22,450, data_manager.py, 73, INFO, Processing ticker ECL\n", + "2024-10-23 21:16:22,450, data_manager.py, 73, INFO, Processing ticker ECL\n", + "2024-10-23 21:16:22,453, data_manager.py, 108, INFO, Getting stock price data for ECL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:22,453, data_manager.py, 108, INFO, Getting stock price data for ECL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:22,903, data_manager.py, 82, INFO, Saving data for ECL by year\n", + "2024-10-23 21:16:22,903, data_manager.py, 82, INFO, Saving data for ECL by year\n", + "2024-10-23 21:16:24,332, data_manager.py, 73, INFO, Processing ticker EIX\n", + "2024-10-23 21:16:24,332, data_manager.py, 73, INFO, Processing ticker EIX\n", + "2024-10-23 21:16:24,336, data_manager.py, 108, INFO, Getting stock price data for EIX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:24,336, data_manager.py, 108, INFO, Getting stock price data for EIX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:24,653, data_manager.py, 82, INFO, Saving data for EIX by year\n", + "2024-10-23 21:16:24,653, data_manager.py, 82, INFO, Saving data for EIX by year\n", + "2024-10-23 21:16:26,138, data_manager.py, 73, INFO, Processing ticker EW\n", + "2024-10-23 21:16:26,138, data_manager.py, 73, INFO, Processing ticker EW\n", + "2024-10-23 21:16:26,140, data_manager.py, 108, INFO, Getting stock price data for EW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:26,140, data_manager.py, 108, INFO, Getting stock price data for EW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:26,507, data_manager.py, 82, INFO, Saving data for EW by year\n", + "2024-10-23 21:16:26,507, data_manager.py, 82, INFO, Saving data for EW by year\n", + "2024-10-23 21:16:27,976, data_manager.py, 73, INFO, Processing ticker EA\n", + "2024-10-23 21:16:27,976, data_manager.py, 73, INFO, Processing ticker EA\n", + "2024-10-23 21:16:27,978, data_manager.py, 108, INFO, Getting stock price data for EA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:27,978, data_manager.py, 108, INFO, Getting stock price data for EA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:28,343, data_manager.py, 82, INFO, Saving data for EA by year\n", + "2024-10-23 21:16:28,343, data_manager.py, 82, INFO, Saving data for EA by year\n", + "2024-10-23 21:16:30,013, data_manager.py, 73, INFO, Processing ticker ELV\n", + "2024-10-23 21:16:30,013, data_manager.py, 73, INFO, Processing ticker ELV\n", + "2024-10-23 21:16:30,016, data_manager.py, 108, INFO, Getting stock price data for ELV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:30,016, data_manager.py, 108, INFO, Getting stock price data for ELV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:30,356, data_manager.py, 82, INFO, Saving data for ELV by year\n", + "2024-10-23 21:16:30,356, data_manager.py, 82, INFO, Saving data for ELV by year\n", + "2024-10-23 21:16:31,706, data_manager.py, 73, INFO, Processing ticker LLY\n", + "2024-10-23 21:16:31,706, data_manager.py, 73, INFO, Processing ticker LLY\n", + "2024-10-23 21:16:31,708, data_manager.py, 108, INFO, Getting stock price data for LLY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:31,708, data_manager.py, 108, INFO, Getting stock price data for LLY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:32,134, data_manager.py, 82, INFO, Saving data for LLY by year\n", + "2024-10-23 21:16:32,134, data_manager.py, 82, INFO, Saving data for LLY by year\n", + "2024-10-23 21:16:33,574, data_manager.py, 73, INFO, Processing ticker EMR\n", + "2024-10-23 21:16:33,574, data_manager.py, 73, INFO, Processing ticker EMR\n", + "2024-10-23 21:16:33,577, data_manager.py, 108, INFO, Getting stock price data for EMR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:33,577, data_manager.py, 108, INFO, Getting stock price data for EMR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:33,921, data_manager.py, 82, INFO, Saving data for EMR by year\n", + "2024-10-23 21:16:33,921, data_manager.py, 82, INFO, Saving data for EMR by year\n", + "2024-10-23 21:16:35,484, data_manager.py, 73, INFO, Processing ticker ENPH\n", + "2024-10-23 21:16:35,484, data_manager.py, 73, INFO, Processing ticker ENPH\n", + "2024-10-23 21:16:35,488, data_manager.py, 108, INFO, Getting stock price data for ENPH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:35,488, data_manager.py, 108, INFO, Getting stock price data for ENPH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:35,606, data_manager.py, 82, INFO, Saving data for ENPH by year\n", + "2024-10-23 21:16:35,606, data_manager.py, 82, INFO, Saving data for ENPH by year\n", + "2024-10-23 21:16:36,348, data_manager.py, 73, INFO, Processing ticker ETR\n", + "2024-10-23 21:16:36,348, data_manager.py, 73, INFO, Processing ticker ETR\n", + "2024-10-23 21:16:36,351, data_manager.py, 108, INFO, Getting stock price data for ETR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:36,351, data_manager.py, 108, INFO, Getting stock price data for ETR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:36,600, data_manager.py, 82, INFO, Saving data for ETR by year\n", + "2024-10-23 21:16:36,600, data_manager.py, 82, INFO, Saving data for ETR by year\n", + "2024-10-23 21:16:38,034, data_manager.py, 73, INFO, Processing ticker EOG\n", + "2024-10-23 21:16:38,034, data_manager.py, 73, INFO, Processing ticker EOG\n", + "2024-10-23 21:16:38,036, data_manager.py, 108, INFO, Getting stock price data for EOG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:38,036, data_manager.py, 108, INFO, Getting stock price data for EOG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:38,339, data_manager.py, 82, INFO, Saving data for EOG by year\n", + "2024-10-23 21:16:38,339, data_manager.py, 82, INFO, Saving data for EOG by year\n", + "2024-10-23 21:16:39,672, data_manager.py, 73, INFO, Processing ticker EPAM\n", + "2024-10-23 21:16:39,672, data_manager.py, 73, INFO, Processing ticker EPAM\n", + "2024-10-23 21:16:39,674, data_manager.py, 108, INFO, Getting stock price data for EPAM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:39,674, data_manager.py, 108, INFO, Getting stock price data for EPAM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:39,806, data_manager.py, 82, INFO, Saving data for EPAM by year\n", + "2024-10-23 21:16:39,806, data_manager.py, 82, INFO, Saving data for EPAM by year\n", + "2024-10-23 21:16:40,461, data_manager.py, 73, INFO, Processing ticker EQT\n", + "2024-10-23 21:16:40,461, data_manager.py, 73, INFO, Processing ticker EQT\n", + "2024-10-23 21:16:40,462, data_manager.py, 108, INFO, Getting stock price data for EQT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:40,462, data_manager.py, 108, INFO, Getting stock price data for EQT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:40,851, data_manager.py, 82, INFO, Saving data for EQT by year\n", + "2024-10-23 21:16:40,851, data_manager.py, 82, INFO, Saving data for EQT by year\n", + "2024-10-23 21:16:41,865, data_manager.py, 73, INFO, Processing ticker EFX\n", + "2024-10-23 21:16:41,865, data_manager.py, 73, INFO, Processing ticker EFX\n", + "2024-10-23 21:16:41,866, data_manager.py, 108, INFO, Getting stock price data for EFX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:41,866, data_manager.py, 108, INFO, Getting stock price data for EFX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:42,203, data_manager.py, 82, INFO, Saving data for EFX by year\n", + "2024-10-23 21:16:42,203, data_manager.py, 82, INFO, Saving data for EFX by year\n", + "2024-10-23 21:16:43,240, data_manager.py, 73, INFO, Processing ticker EQIX\n", + "2024-10-23 21:16:43,240, data_manager.py, 73, INFO, Processing ticker EQIX\n", + "2024-10-23 21:16:43,241, data_manager.py, 108, INFO, Getting stock price data for EQIX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:43,241, data_manager.py, 108, INFO, Getting stock price data for EQIX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:43,442, data_manager.py, 82, INFO, Saving data for EQIX by year\n", + "2024-10-23 21:16:43,442, data_manager.py, 82, INFO, Saving data for EQIX by year\n", + "2024-10-23 21:16:44,423, data_manager.py, 73, INFO, Processing ticker EQR\n", + "2024-10-23 21:16:44,423, data_manager.py, 73, INFO, Processing ticker EQR\n", + "2024-10-23 21:16:44,425, data_manager.py, 108, INFO, Getting stock price data for EQR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:44,425, data_manager.py, 108, INFO, Getting stock price data for EQR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:44,674, data_manager.py, 82, INFO, Saving data for EQR by year\n", + "2024-10-23 21:16:44,674, data_manager.py, 82, INFO, Saving data for EQR by year\n", + "2024-10-23 21:16:45,845, data_manager.py, 73, INFO, Processing ticker ESS\n", + "2024-10-23 21:16:45,845, data_manager.py, 73, INFO, Processing ticker ESS\n", + "2024-10-23 21:16:45,846, data_manager.py, 108, INFO, Getting stock price data for ESS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:45,846, data_manager.py, 108, INFO, Getting stock price data for ESS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:46,057, data_manager.py, 82, INFO, Saving data for ESS by year\n", + "2024-10-23 21:16:46,057, data_manager.py, 82, INFO, Saving data for ESS by year\n", + "2024-10-23 21:16:46,989, data_manager.py, 73, INFO, Processing ticker EL\n", + "2024-10-23 21:16:46,989, data_manager.py, 73, INFO, Processing ticker EL\n", + "2024-10-23 21:16:46,991, data_manager.py, 108, INFO, Getting stock price data for EL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:46,991, data_manager.py, 108, INFO, Getting stock price data for EL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:47,270, data_manager.py, 82, INFO, Saving data for EL by year\n", + "2024-10-23 21:16:47,270, data_manager.py, 82, INFO, Saving data for EL by year\n", + "2024-10-23 21:16:48,497, data_manager.py, 73, INFO, Processing ticker ETSY\n", + "2024-10-23 21:16:48,497, data_manager.py, 73, INFO, Processing ticker ETSY\n", + "2024-10-23 21:16:48,498, data_manager.py, 108, INFO, Getting stock price data for ETSY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:48,498, data_manager.py, 108, INFO, Getting stock price data for ETSY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:48,626, data_manager.py, 82, INFO, Saving data for ETSY by year\n", + "2024-10-23 21:16:48,626, data_manager.py, 82, INFO, Saving data for ETSY by year\n", + "2024-10-23 21:16:49,005, data_manager.py, 73, INFO, Processing ticker EG\n", + "2024-10-23 21:16:49,005, data_manager.py, 73, INFO, Processing ticker EG\n", + "2024-10-23 21:16:49,006, data_manager.py, 108, INFO, Getting stock price data for EG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:49,006, data_manager.py, 108, INFO, Getting stock price data for EG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:49,237, data_manager.py, 82, INFO, Saving data for EG by year\n", + "2024-10-23 21:16:49,237, data_manager.py, 82, INFO, Saving data for EG by year\n", + "2024-10-23 21:16:50,460, data_manager.py, 73, INFO, Processing ticker EVRG\n", + "2024-10-23 21:16:50,460, data_manager.py, 73, INFO, Processing ticker EVRG\n", + "2024-10-23 21:16:50,461, data_manager.py, 108, INFO, Getting stock price data for EVRG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:50,461, data_manager.py, 108, INFO, Getting stock price data for EVRG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:50,673, data_manager.py, 82, INFO, Saving data for EVRG by year\n", + "2024-10-23 21:16:50,673, data_manager.py, 82, INFO, Saving data for EVRG by year\n", + "2024-10-23 21:16:51,645, data_manager.py, 73, INFO, Processing ticker ES\n", + "2024-10-23 21:16:51,645, data_manager.py, 73, INFO, Processing ticker ES\n", + "2024-10-23 21:16:51,646, data_manager.py, 108, INFO, Getting stock price data for ES from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:51,646, data_manager.py, 108, INFO, Getting stock price data for ES from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:51,861, data_manager.py, 82, INFO, Saving data for ES by year\n", + "2024-10-23 21:16:51,861, data_manager.py, 82, INFO, Saving data for ES by year\n", + "2024-10-23 21:16:52,765, data_manager.py, 73, INFO, Processing ticker EXC\n", + "2024-10-23 21:16:52,765, data_manager.py, 73, INFO, Processing ticker EXC\n", + "2024-10-23 21:16:52,766, data_manager.py, 108, INFO, Getting stock price data for EXC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:52,766, data_manager.py, 108, INFO, Getting stock price data for EXC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:53,143, data_manager.py, 82, INFO, Saving data for EXC by year\n", + "2024-10-23 21:16:53,143, data_manager.py, 82, INFO, Saving data for EXC by year\n", + "2024-10-23 21:16:54,198, data_manager.py, 73, INFO, Processing ticker EXPE\n", + "2024-10-23 21:16:54,198, data_manager.py, 73, INFO, Processing ticker EXPE\n", + "2024-10-23 21:16:54,199, data_manager.py, 108, INFO, Getting stock price data for EXPE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:54,199, data_manager.py, 108, INFO, Getting stock price data for EXPE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:54,501, data_manager.py, 82, INFO, Saving data for EXPE by year\n", + "2024-10-23 21:16:54,501, data_manager.py, 82, INFO, Saving data for EXPE by year\n", + "2024-10-23 21:16:55,702, data_manager.py, 73, INFO, Processing ticker EXPD\n", + "2024-10-23 21:16:55,702, data_manager.py, 73, INFO, Processing ticker EXPD\n", + "2024-10-23 21:16:55,704, data_manager.py, 108, INFO, Getting stock price data for EXPD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:55,704, data_manager.py, 108, INFO, Getting stock price data for EXPD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:56,045, data_manager.py, 82, INFO, Saving data for EXPD by year\n", + "2024-10-23 21:16:56,045, data_manager.py, 82, INFO, Saving data for EXPD by year\n", + "2024-10-23 21:16:56,966, data_manager.py, 73, INFO, Processing ticker EXR\n", + "2024-10-23 21:16:56,966, data_manager.py, 73, INFO, Processing ticker EXR\n", + "2024-10-23 21:16:56,967, data_manager.py, 108, INFO, Getting stock price data for EXR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:56,967, data_manager.py, 108, INFO, Getting stock price data for EXR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:57,185, data_manager.py, 82, INFO, Saving data for EXR by year\n", + "2024-10-23 21:16:57,185, data_manager.py, 82, INFO, Saving data for EXR by year\n", + "2024-10-23 21:16:58,251, data_manager.py, 73, INFO, Processing ticker XOM\n", + "2024-10-23 21:16:58,251, data_manager.py, 73, INFO, Processing ticker XOM\n", + "2024-10-23 21:16:58,253, data_manager.py, 108, INFO, Getting stock price data for XOM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:58,253, data_manager.py, 108, INFO, Getting stock price data for XOM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:16:58,584, data_manager.py, 82, INFO, Saving data for XOM by year\n", + "2024-10-23 21:16:58,584, data_manager.py, 82, INFO, Saving data for XOM by year\n", + "2024-10-23 21:16:59,842, data_manager.py, 73, INFO, Processing ticker FFIV\n", + "2024-10-23 21:16:59,842, data_manager.py, 73, INFO, Processing ticker FFIV\n", + "2024-10-23 21:16:59,843, data_manager.py, 108, INFO, Getting stock price data for FFIV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:16:59,843, data_manager.py, 108, INFO, Getting stock price data for FFIV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:00,034, data_manager.py, 82, INFO, Saving data for FFIV by year\n", + "2024-10-23 21:17:00,034, data_manager.py, 82, INFO, Saving data for FFIV by year\n", + "2024-10-23 21:17:01,134, data_manager.py, 73, INFO, Processing ticker FDS\n", + "2024-10-23 21:17:01,134, data_manager.py, 73, INFO, Processing ticker FDS\n", + "2024-10-23 21:17:01,135, data_manager.py, 108, INFO, Getting stock price data for FDS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:01,135, data_manager.py, 108, INFO, Getting stock price data for FDS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:01,466, data_manager.py, 82, INFO, Saving data for FDS by year\n", + "2024-10-23 21:17:01,466, data_manager.py, 82, INFO, Saving data for FDS by year\n", + "2024-10-23 21:17:02,457, data_manager.py, 73, INFO, Processing ticker FICO\n", + "2024-10-23 21:17:02,457, data_manager.py, 73, INFO, Processing ticker FICO\n", + "2024-10-23 21:17:02,458, data_manager.py, 108, INFO, Getting stock price data for FICO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:02,458, data_manager.py, 108, INFO, Getting stock price data for FICO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:02,759, data_manager.py, 82, INFO, Saving data for FICO by year\n", + "2024-10-23 21:17:02,759, data_manager.py, 82, INFO, Saving data for FICO by year\n", + "2024-10-23 21:17:03,678, data_manager.py, 73, INFO, Processing ticker FAST\n", + "2024-10-23 21:17:03,678, data_manager.py, 73, INFO, Processing ticker FAST\n", + "2024-10-23 21:17:03,680, data_manager.py, 108, INFO, Getting stock price data for FAST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:03,680, data_manager.py, 108, INFO, Getting stock price data for FAST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:03,932, data_manager.py, 82, INFO, Saving data for FAST by year\n", + "2024-10-23 21:17:03,932, data_manager.py, 82, INFO, Saving data for FAST by year\n", + "2024-10-23 21:17:05,003, data_manager.py, 73, INFO, Processing ticker FRT\n", + "2024-10-23 21:17:05,003, data_manager.py, 73, INFO, Processing ticker FRT\n", + "2024-10-23 21:17:05,005, data_manager.py, 108, INFO, Getting stock price data for FRT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:05,005, data_manager.py, 108, INFO, Getting stock price data for FRT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:05,233, data_manager.py, 82, INFO, Saving data for FRT by year\n", + "2024-10-23 21:17:05,233, data_manager.py, 82, INFO, Saving data for FRT by year\n", + "2024-10-23 21:17:06,309, data_manager.py, 73, INFO, Processing ticker FDX\n", + "2024-10-23 21:17:06,309, data_manager.py, 73, INFO, Processing ticker FDX\n", + "2024-10-23 21:17:06,311, data_manager.py, 108, INFO, Getting stock price data for FDX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:06,311, data_manager.py, 108, INFO, Getting stock price data for FDX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:06,496, data_manager.py, 82, INFO, Saving data for FDX by year\n", + "2024-10-23 21:17:06,496, data_manager.py, 82, INFO, Saving data for FDX by year\n", + "2024-10-23 21:17:07,611, data_manager.py, 73, INFO, Processing ticker FIS\n", + "2024-10-23 21:17:07,611, data_manager.py, 73, INFO, Processing ticker FIS\n", + "2024-10-23 21:17:07,612, data_manager.py, 108, INFO, Getting stock price data for FIS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:07,612, data_manager.py, 108, INFO, Getting stock price data for FIS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:07,775, data_manager.py, 82, INFO, Saving data for FIS by year\n", + "2024-10-23 21:17:07,775, data_manager.py, 82, INFO, Saving data for FIS by year\n", + "2024-10-23 21:17:29,904, data_manager.py, 73, INFO, Processing ticker FITB\n", + "2024-10-23 21:17:29,904, data_manager.py, 73, INFO, Processing ticker FITB\n", + "2024-10-23 21:17:29,906, data_manager.py, 108, INFO, Getting stock price data for FITB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:29,906, data_manager.py, 108, INFO, Getting stock price data for FITB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:09,224, data_manager.py, 82, INFO, Saving data for FITB by year\n", + "2024-10-23 21:17:09,224, data_manager.py, 82, INFO, Saving data for FITB by year\n", + "2024-10-23 21:17:10,556, data_manager.py, 73, INFO, Processing ticker FSLR\n", + "2024-10-23 21:17:10,556, data_manager.py, 73, INFO, Processing ticker FSLR\n", + "2024-10-23 21:17:10,557, data_manager.py, 108, INFO, Getting stock price data for FSLR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:10,557, data_manager.py, 108, INFO, Getting stock price data for FSLR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:10,848, data_manager.py, 82, INFO, Saving data for FSLR by year\n", + "2024-10-23 21:17:10,848, data_manager.py, 82, INFO, Saving data for FSLR by year\n", + "2024-10-23 21:17:11,733, data_manager.py, 73, INFO, Processing ticker FE\n", + "2024-10-23 21:17:11,733, data_manager.py, 73, INFO, Processing ticker FE\n", + "2024-10-23 21:17:11,735, data_manager.py, 108, INFO, Getting stock price data for FE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:11,735, data_manager.py, 108, INFO, Getting stock price data for FE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:12,030, data_manager.py, 82, INFO, Saving data for FE by year\n", + "2024-10-23 21:17:12,030, data_manager.py, 82, INFO, Saving data for FE by year\n", + "2024-10-23 21:17:13,130, data_manager.py, 73, INFO, Processing ticker FI\n", + "2024-10-23 21:17:13,130, data_manager.py, 73, INFO, Processing ticker FI\n", + "2024-10-23 21:17:13,132, data_manager.py, 108, INFO, Getting stock price data for FI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:13,132, data_manager.py, 108, INFO, Getting stock price data for FI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:13,410, data_manager.py, 82, INFO, Saving data for FI by year\n", + "2024-10-23 21:17:13,410, data_manager.py, 82, INFO, Saving data for FI by year\n", + "2024-10-23 21:17:14,240, data_manager.py, 73, INFO, Processing ticker FLT\n", + "2024-10-23 21:17:14,240, data_manager.py, 73, INFO, Processing ticker FLT\n", + "2024-10-23 21:17:14,241, data_manager.py, 108, INFO, Getting stock price data for FLT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:14,241, data_manager.py, 108, INFO, Getting stock price data for FLT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['FLT']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n", + "2024-10-23 21:17:15,501, data_manager.py, 82, INFO, Saving data for FLT by year\n", + "2024-10-23 21:17:15,501, data_manager.py, 82, INFO, Saving data for FLT by year\n", + "2024-10-23 21:17:15,503, data_manager.py, 100, WARNING, No data found for FLT\n", + "2024-10-23 21:17:15,503, data_manager.py, 100, WARNING, No data found for FLT\n", + "2024-10-23 21:17:15,505, data_manager.py, 73, INFO, Processing ticker FMC\n", + "2024-10-23 21:17:15,505, data_manager.py, 73, INFO, Processing ticker FMC\n", + "2024-10-23 21:17:15,507, data_manager.py, 108, INFO, Getting stock price data for FMC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:15,507, data_manager.py, 108, INFO, Getting stock price data for FMC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:15,798, data_manager.py, 82, INFO, Saving data for FMC by year\n", + "2024-10-23 21:17:15,798, data_manager.py, 82, INFO, Saving data for FMC by year\n", + "2024-10-23 21:17:17,034, data_manager.py, 73, INFO, Processing ticker F\n", + "2024-10-23 21:17:17,034, data_manager.py, 73, INFO, Processing ticker F\n", + "2024-10-23 21:17:17,036, data_manager.py, 108, INFO, Getting stock price data for F from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:17,036, data_manager.py, 108, INFO, Getting stock price data for F from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:17,420, data_manager.py, 82, INFO, Saving data for F by year\n", + "2024-10-23 21:17:17,420, data_manager.py, 82, INFO, Saving data for F by year\n", + "2024-10-23 21:17:18,387, data_manager.py, 73, INFO, Processing ticker FTNT\n", + "2024-10-23 21:17:18,387, data_manager.py, 73, INFO, Processing ticker FTNT\n", + "2024-10-23 21:17:18,389, data_manager.py, 108, INFO, Getting stock price data for FTNT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:18,389, data_manager.py, 108, INFO, Getting stock price data for FTNT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:18,612, data_manager.py, 82, INFO, Saving data for FTNT by year\n", + "2024-10-23 21:17:18,612, data_manager.py, 82, INFO, Saving data for FTNT by year\n", + "2024-10-23 21:17:19,370, data_manager.py, 73, INFO, Processing ticker FTV\n", + "2024-10-23 21:17:19,370, data_manager.py, 73, INFO, Processing ticker FTV\n", + "2024-10-23 21:17:19,372, data_manager.py, 108, INFO, Getting stock price data for FTV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:19,372, data_manager.py, 108, INFO, Getting stock price data for FTV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:19,622, data_manager.py, 82, INFO, Saving data for FTV by year\n", + "2024-10-23 21:17:19,622, data_manager.py, 82, INFO, Saving data for FTV by year\n", + "2024-10-23 21:17:20,078, data_manager.py, 73, INFO, Processing ticker FOXA\n", + "2024-10-23 21:17:20,078, data_manager.py, 73, INFO, Processing ticker FOXA\n", + "2024-10-23 21:17:20,080, data_manager.py, 108, INFO, Getting stock price data for FOXA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:20,080, data_manager.py, 108, INFO, Getting stock price data for FOXA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:20,218, data_manager.py, 82, INFO, Saving data for FOXA by year\n", + "2024-10-23 21:17:20,218, data_manager.py, 82, INFO, Saving data for FOXA by year\n", + "2024-10-23 21:17:20,467, data_manager.py, 73, INFO, Processing ticker FOX\n", + "2024-10-23 21:17:20,467, data_manager.py, 73, INFO, Processing ticker FOX\n", + "2024-10-23 21:17:20,468, data_manager.py, 108, INFO, Getting stock price data for FOX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:20,468, data_manager.py, 108, INFO, Getting stock price data for FOX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:20,604, data_manager.py, 82, INFO, Saving data for FOX by year\n", + "2024-10-23 21:17:20,604, data_manager.py, 82, INFO, Saving data for FOX by year\n", + "2024-10-23 21:17:20,841, data_manager.py, 73, INFO, Processing ticker BEN\n", + "2024-10-23 21:17:20,841, data_manager.py, 73, INFO, Processing ticker BEN\n", + "2024-10-23 21:17:20,843, data_manager.py, 108, INFO, Getting stock price data for BEN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:20,843, data_manager.py, 108, INFO, Getting stock price data for BEN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:21,177, data_manager.py, 82, INFO, Saving data for BEN by year\n", + "2024-10-23 21:17:21,177, data_manager.py, 82, INFO, Saving data for BEN by year\n", + "2024-10-23 21:17:22,377, data_manager.py, 73, INFO, Processing ticker FCX\n", + "2024-10-23 21:17:22,377, data_manager.py, 73, INFO, Processing ticker FCX\n", + "2024-10-23 21:17:22,379, data_manager.py, 108, INFO, Getting stock price data for FCX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:22,379, data_manager.py, 108, INFO, Getting stock price data for FCX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:22,682, data_manager.py, 82, INFO, Saving data for FCX by year\n", + "2024-10-23 21:17:22,682, data_manager.py, 82, INFO, Saving data for FCX by year\n", + "2024-10-23 21:17:23,674, data_manager.py, 73, INFO, Processing ticker GRMN\n", + "2024-10-23 21:17:23,674, data_manager.py, 73, INFO, Processing ticker GRMN\n", + "2024-10-23 21:17:23,675, data_manager.py, 108, INFO, Getting stock price data for GRMN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:23,675, data_manager.py, 108, INFO, Getting stock price data for GRMN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:24,020, data_manager.py, 82, INFO, Saving data for GRMN by year\n", + "2024-10-23 21:17:24,020, data_manager.py, 82, INFO, Saving data for GRMN by year\n", + "2024-10-23 21:17:24,980, data_manager.py, 73, INFO, Processing ticker IT\n", + "2024-10-23 21:17:24,980, data_manager.py, 73, INFO, Processing ticker IT\n", + "2024-10-23 21:17:24,982, data_manager.py, 108, INFO, Getting stock price data for IT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:24,982, data_manager.py, 108, INFO, Getting stock price data for IT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:25,269, data_manager.py, 82, INFO, Saving data for IT by year\n", + "2024-10-23 21:17:25,269, data_manager.py, 82, INFO, Saving data for IT by year\n", + "2024-10-23 21:17:26,307, data_manager.py, 73, INFO, Processing ticker GEHC\n", + "2024-10-23 21:17:26,307, data_manager.py, 73, INFO, Processing ticker GEHC\n", + "2024-10-23 21:17:26,308, data_manager.py, 108, INFO, Getting stock price data for GEHC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:26,308, data_manager.py, 108, INFO, Getting stock price data for GEHC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:26,434, data_manager.py, 82, INFO, Saving data for GEHC by year\n", + "2024-10-23 21:17:26,434, data_manager.py, 82, INFO, Saving data for GEHC by year\n", + "2024-10-23 21:17:26,614, data_manager.py, 73, INFO, Processing ticker GEN\n", + "2024-10-23 21:17:26,614, data_manager.py, 73, INFO, Processing ticker GEN\n", + "2024-10-23 21:17:26,615, data_manager.py, 108, INFO, Getting stock price data for GEN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:26,615, data_manager.py, 108, INFO, Getting stock price data for GEN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:27,027, data_manager.py, 82, INFO, Saving data for GEN by year\n", + "2024-10-23 21:17:27,027, data_manager.py, 82, INFO, Saving data for GEN by year\n", + "2024-10-23 21:17:28,001, data_manager.py, 73, INFO, Processing ticker GNRC\n", + "2024-10-23 21:17:28,001, data_manager.py, 73, INFO, Processing ticker GNRC\n", + "2024-10-23 21:17:28,002, data_manager.py, 108, INFO, Getting stock price data for GNRC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:28,002, data_manager.py, 108, INFO, Getting stock price data for GNRC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:28,192, data_manager.py, 82, INFO, Saving data for GNRC by year\n", + "2024-10-23 21:17:28,192, data_manager.py, 82, INFO, Saving data for GNRC by year\n", + "2024-10-23 21:17:49,915, data_manager.py, 73, INFO, Processing ticker GD\n", + "2024-10-23 21:17:49,915, data_manager.py, 73, INFO, Processing ticker GD\n", + "2024-10-23 21:17:49,917, data_manager.py, 108, INFO, Getting stock price data for GD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:49,917, data_manager.py, 108, INFO, Getting stock price data for GD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:29,227, data_manager.py, 82, INFO, Saving data for GD by year\n", + "2024-10-23 21:17:29,227, data_manager.py, 82, INFO, Saving data for GD by year\n", + "2024-10-23 21:17:30,339, data_manager.py, 73, INFO, Processing ticker GE\n", + "2024-10-23 21:17:30,339, data_manager.py, 73, INFO, Processing ticker GE\n", + "2024-10-23 21:17:30,341, data_manager.py, 108, INFO, Getting stock price data for GE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:30,341, data_manager.py, 108, INFO, Getting stock price data for GE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:30,721, data_manager.py, 82, INFO, Saving data for GE by year\n", + "2024-10-23 21:17:30,721, data_manager.py, 82, INFO, Saving data for GE by year\n", + "2024-10-23 21:17:31,875, data_manager.py, 73, INFO, Processing ticker GIS\n", + "2024-10-23 21:17:31,875, data_manager.py, 73, INFO, Processing ticker GIS\n", + "2024-10-23 21:17:31,877, data_manager.py, 108, INFO, Getting stock price data for GIS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:31,877, data_manager.py, 108, INFO, Getting stock price data for GIS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:32,193, data_manager.py, 82, INFO, Saving data for GIS by year\n", + "2024-10-23 21:17:32,193, data_manager.py, 82, INFO, Saving data for GIS by year\n", + "2024-10-23 21:17:33,257, data_manager.py, 73, INFO, Processing ticker GM\n", + "2024-10-23 21:17:33,257, data_manager.py, 73, INFO, Processing ticker GM\n", + "2024-10-23 21:17:33,258, data_manager.py, 108, INFO, Getting stock price data for GM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:33,258, data_manager.py, 108, INFO, Getting stock price data for GM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:33,598, data_manager.py, 82, INFO, Saving data for GM by year\n", + "2024-10-23 21:17:33,598, data_manager.py, 82, INFO, Saving data for GM by year\n", + "2024-10-23 21:17:34,203, data_manager.py, 73, INFO, Processing ticker GPC\n", + "2024-10-23 21:17:34,203, data_manager.py, 73, INFO, Processing ticker GPC\n", + "2024-10-23 21:17:34,205, data_manager.py, 108, INFO, Getting stock price data for GPC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:34,205, data_manager.py, 108, INFO, Getting stock price data for GPC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:34,579, data_manager.py, 82, INFO, Saving data for GPC by year\n", + "2024-10-23 21:17:34,579, data_manager.py, 82, INFO, Saving data for GPC by year\n", + "2024-10-23 21:17:35,745, data_manager.py, 73, INFO, Processing ticker GILD\n", + "2024-10-23 21:17:35,745, data_manager.py, 73, INFO, Processing ticker GILD\n", + "2024-10-23 21:17:35,746, data_manager.py, 108, INFO, Getting stock price data for GILD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:35,746, data_manager.py, 108, INFO, Getting stock price data for GILD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:36,096, data_manager.py, 82, INFO, Saving data for GILD by year\n", + "2024-10-23 21:17:36,096, data_manager.py, 82, INFO, Saving data for GILD by year\n", + "2024-10-23 21:17:37,209, data_manager.py, 73, INFO, Processing ticker GPN\n", + "2024-10-23 21:17:37,209, data_manager.py, 73, INFO, Processing ticker GPN\n", + "2024-10-23 21:17:37,211, data_manager.py, 108, INFO, Getting stock price data for GPN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:37,211, data_manager.py, 108, INFO, Getting stock price data for GPN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:37,492, data_manager.py, 82, INFO, Saving data for GPN by year\n", + "2024-10-23 21:17:37,492, data_manager.py, 82, INFO, Saving data for GPN by year\n", + "2024-10-23 21:17:38,594, data_manager.py, 73, INFO, Processing ticker GL\n", + "2024-10-23 21:17:38,594, data_manager.py, 73, INFO, Processing ticker GL\n", + "2024-10-23 21:17:38,595, data_manager.py, 108, INFO, Getting stock price data for GL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:38,595, data_manager.py, 108, INFO, Getting stock price data for GL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:59,988, data_manager.py, 82, INFO, Saving data for GL by year\n", + "2024-10-23 21:17:59,988, data_manager.py, 82, INFO, Saving data for GL by year\n", + "2024-10-23 21:17:39,978, data_manager.py, 73, INFO, Processing ticker GS\n", + "2024-10-23 21:17:39,978, data_manager.py, 73, INFO, Processing ticker GS\n", + "2024-10-23 21:17:39,980, data_manager.py, 108, INFO, Getting stock price data for GS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:39,980, data_manager.py, 108, INFO, Getting stock price data for GS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:40,227, data_manager.py, 82, INFO, Saving data for GS by year\n", + "2024-10-23 21:17:40,227, data_manager.py, 82, INFO, Saving data for GS by year\n", + "2024-10-23 21:17:41,376, data_manager.py, 73, INFO, Processing ticker HAL\n", + "2024-10-23 21:17:41,376, data_manager.py, 73, INFO, Processing ticker HAL\n", + "2024-10-23 21:17:41,378, data_manager.py, 108, INFO, Getting stock price data for HAL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:41,378, data_manager.py, 108, INFO, Getting stock price data for HAL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:41,696, data_manager.py, 82, INFO, Saving data for HAL by year\n", + "2024-10-23 21:17:41,696, data_manager.py, 82, INFO, Saving data for HAL by year\n", + "2024-10-23 21:17:42,852, data_manager.py, 73, INFO, Processing ticker HIG\n", + "2024-10-23 21:17:42,852, data_manager.py, 73, INFO, Processing ticker HIG\n", + "2024-10-23 21:17:42,854, data_manager.py, 108, INFO, Getting stock price data for HIG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:42,854, data_manager.py, 108, INFO, Getting stock price data for HIG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:43,162, data_manager.py, 82, INFO, Saving data for HIG by year\n", + "2024-10-23 21:17:43,162, data_manager.py, 82, INFO, Saving data for HIG by year\n", + "2024-10-23 21:17:44,150, data_manager.py, 73, INFO, Processing ticker HAS\n", + "2024-10-23 21:17:44,150, data_manager.py, 73, INFO, Processing ticker HAS\n", + "2024-10-23 21:17:44,152, data_manager.py, 108, INFO, Getting stock price data for HAS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:44,152, data_manager.py, 108, INFO, Getting stock price data for HAS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:44,418, data_manager.py, 82, INFO, Saving data for HAS by year\n", + "2024-10-23 21:17:44,418, data_manager.py, 82, INFO, Saving data for HAS by year\n", + "2024-10-23 21:17:45,446, data_manager.py, 73, INFO, Processing ticker HCA\n", + "2024-10-23 21:17:45,446, data_manager.py, 73, INFO, Processing ticker HCA\n", + "2024-10-23 21:17:45,448, data_manager.py, 108, INFO, Getting stock price data for HCA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:45,448, data_manager.py, 108, INFO, Getting stock price data for HCA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:45,697, data_manager.py, 82, INFO, Saving data for HCA by year\n", + "2024-10-23 21:17:45,697, data_manager.py, 82, INFO, Saving data for HCA by year\n", + "2024-10-23 21:17:46,361, data_manager.py, 73, INFO, Processing ticker PEAK\n", + "2024-10-23 21:17:46,361, data_manager.py, 73, INFO, Processing ticker PEAK\n", + "2024-10-23 21:17:46,362, data_manager.py, 108, INFO, Getting stock price data for PEAK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:46,362, data_manager.py, 108, INFO, Getting stock price data for PEAK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['PEAK']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n", + "2024-10-23 21:17:47,084, data_manager.py, 82, INFO, Saving data for PEAK by year\n", + "2024-10-23 21:17:47,084, data_manager.py, 82, INFO, Saving data for PEAK by year\n", + "2024-10-23 21:17:47,086, data_manager.py, 100, WARNING, No data found for PEAK\n", + "2024-10-23 21:17:47,086, data_manager.py, 100, WARNING, No data found for PEAK\n", + "2024-10-23 21:17:47,088, data_manager.py, 73, INFO, Processing ticker HSIC\n", + "2024-10-23 21:17:47,088, data_manager.py, 73, INFO, Processing ticker HSIC\n", + "2024-10-23 21:17:47,090, data_manager.py, 108, INFO, Getting stock price data for HSIC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:47,090, data_manager.py, 108, INFO, Getting stock price data for HSIC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:47,367, data_manager.py, 82, INFO, Saving data for HSIC by year\n", + "2024-10-23 21:17:47,367, data_manager.py, 82, INFO, Saving data for HSIC by year\n", + "2024-10-23 21:17:48,500, data_manager.py, 73, INFO, Processing ticker HSY\n", + "2024-10-23 21:17:48,500, data_manager.py, 73, INFO, Processing ticker HSY\n", + "2024-10-23 21:17:48,501, data_manager.py, 108, INFO, Getting stock price data for HSY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:48,501, data_manager.py, 108, INFO, Getting stock price data for HSY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:48,779, data_manager.py, 82, INFO, Saving data for HSY by year\n", + "2024-10-23 21:17:48,779, data_manager.py, 82, INFO, Saving data for HSY by year\n", + "2024-10-23 21:17:50,036, data_manager.py, 73, INFO, Processing ticker HES\n", + "2024-10-23 21:17:50,036, data_manager.py, 73, INFO, Processing ticker HES\n", + "2024-10-23 21:17:50,039, data_manager.py, 108, INFO, Getting stock price data for HES from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:50,039, data_manager.py, 108, INFO, Getting stock price data for HES from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:50,332, data_manager.py, 82, INFO, Saving data for HES by year\n", + "2024-10-23 21:17:50,332, data_manager.py, 82, INFO, Saving data for HES by year\n", + "2024-10-23 21:17:51,345, data_manager.py, 73, INFO, Processing ticker HPE\n", + "2024-10-23 21:17:51,345, data_manager.py, 73, INFO, Processing ticker HPE\n", + "2024-10-23 21:17:51,347, data_manager.py, 108, INFO, Getting stock price data for HPE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:51,347, data_manager.py, 108, INFO, Getting stock price data for HPE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:51,572, data_manager.py, 82, INFO, Saving data for HPE by year\n", + "2024-10-23 21:17:51,572, data_manager.py, 82, INFO, Saving data for HPE by year\n", + "2024-10-23 21:17:51,992, data_manager.py, 73, INFO, Processing ticker HLT\n", + "2024-10-23 21:17:51,992, data_manager.py, 73, INFO, Processing ticker HLT\n", + "2024-10-23 21:17:51,995, data_manager.py, 108, INFO, Getting stock price data for HLT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:51,995, data_manager.py, 108, INFO, Getting stock price data for HLT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:52,224, data_manager.py, 82, INFO, Saving data for HLT by year\n", + "2024-10-23 21:17:52,224, data_manager.py, 82, INFO, Saving data for HLT by year\n", + "2024-10-23 21:17:52,803, data_manager.py, 73, INFO, Processing ticker HOLX\n", + "2024-10-23 21:17:52,803, data_manager.py, 73, INFO, Processing ticker HOLX\n", + "2024-10-23 21:17:52,805, data_manager.py, 108, INFO, Getting stock price data for HOLX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:52,805, data_manager.py, 108, INFO, Getting stock price data for HOLX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:52,999, data_manager.py, 82, INFO, Saving data for HOLX by year\n", + "2024-10-23 21:17:52,999, data_manager.py, 82, INFO, Saving data for HOLX by year\n", + "2024-10-23 21:18:14,974, data_manager.py, 73, INFO, Processing ticker HD\n", + "2024-10-23 21:18:14,974, data_manager.py, 73, INFO, Processing ticker HD\n", + "2024-10-23 21:18:14,975, data_manager.py, 108, INFO, Getting stock price data for HD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:14,975, data_manager.py, 108, INFO, Getting stock price data for HD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:54,233, data_manager.py, 82, INFO, Saving data for HD by year\n", + "2024-10-23 21:17:54,233, data_manager.py, 82, INFO, Saving data for HD by year\n", + "2024-10-23 21:17:55,495, data_manager.py, 73, INFO, Processing ticker HON\n", + "2024-10-23 21:17:55,495, data_manager.py, 73, INFO, Processing ticker HON\n", + "2024-10-23 21:17:55,497, data_manager.py, 108, INFO, Getting stock price data for HON from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:55,497, data_manager.py, 108, INFO, Getting stock price data for HON from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:55,780, data_manager.py, 82, INFO, Saving data for HON by year\n", + "2024-10-23 21:17:55,780, data_manager.py, 82, INFO, Saving data for HON by year\n", + "2024-10-23 21:17:56,864, data_manager.py, 73, INFO, Processing ticker HRL\n", + "2024-10-23 21:17:56,864, data_manager.py, 73, INFO, Processing ticker HRL\n", + "2024-10-23 21:17:56,866, data_manager.py, 108, INFO, Getting stock price data for HRL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:56,866, data_manager.py, 108, INFO, Getting stock price data for HRL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:57,165, data_manager.py, 82, INFO, Saving data for HRL by year\n", + "2024-10-23 21:17:57,165, data_manager.py, 82, INFO, Saving data for HRL by year\n", + "2024-10-23 21:17:58,119, data_manager.py, 73, INFO, Processing ticker HST\n", + "2024-10-23 21:17:58,119, data_manager.py, 73, INFO, Processing ticker HST\n", + "2024-10-23 21:17:58,122, data_manager.py, 108, INFO, Getting stock price data for HST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:58,122, data_manager.py, 108, INFO, Getting stock price data for HST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:58,467, data_manager.py, 82, INFO, Saving data for HST by year\n", + "2024-10-23 21:17:58,467, data_manager.py, 82, INFO, Saving data for HST by year\n", + "2024-10-23 21:17:59,495, data_manager.py, 73, INFO, Processing ticker HWM\n", + "2024-10-23 21:17:59,495, data_manager.py, 73, INFO, Processing ticker HWM\n", + "2024-10-23 21:17:59,497, data_manager.py, 108, INFO, Getting stock price data for HWM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:17:59,497, data_manager.py, 108, INFO, Getting stock price data for HWM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:17:59,677, data_manager.py, 82, INFO, Saving data for HWM by year\n", + "2024-10-23 21:17:59,677, data_manager.py, 82, INFO, Saving data for HWM by year\n", + "2024-10-23 21:18:00,012, data_manager.py, 73, INFO, Processing ticker HPQ\n", + "2024-10-23 21:18:00,012, data_manager.py, 73, INFO, Processing ticker HPQ\n", + "2024-10-23 21:18:00,014, data_manager.py, 108, INFO, Getting stock price data for HPQ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:00,014, data_manager.py, 108, INFO, Getting stock price data for HPQ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:00,319, data_manager.py, 82, INFO, Saving data for HPQ by year\n", + "2024-10-23 21:18:00,319, data_manager.py, 82, INFO, Saving data for HPQ by year\n", + "2024-10-23 21:18:01,267, data_manager.py, 73, INFO, Processing ticker HUBB\n", + "2024-10-23 21:18:01,267, data_manager.py, 73, INFO, Processing ticker HUBB\n", + "2024-10-23 21:18:01,268, data_manager.py, 108, INFO, Getting stock price data for HUBB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:01,268, data_manager.py, 108, INFO, Getting stock price data for HUBB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:01,591, data_manager.py, 82, INFO, Saving data for HUBB by year\n", + "2024-10-23 21:18:01,591, data_manager.py, 82, INFO, Saving data for HUBB by year\n", + "2024-10-23 21:18:02,584, data_manager.py, 73, INFO, Processing ticker HUM\n", + "2024-10-23 21:18:02,584, data_manager.py, 73, INFO, Processing ticker HUM\n", + "2024-10-23 21:18:02,586, data_manager.py, 108, INFO, Getting stock price data for HUM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:02,586, data_manager.py, 108, INFO, Getting stock price data for HUM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:02,959, data_manager.py, 82, INFO, Saving data for HUM by year\n", + "2024-10-23 21:18:02,959, data_manager.py, 82, INFO, Saving data for HUM by year\n", + "2024-10-23 21:18:24,979, data_manager.py, 73, INFO, Processing ticker HBAN\n", + "2024-10-23 21:18:24,979, data_manager.py, 73, INFO, Processing ticker HBAN\n", + "2024-10-23 21:18:24,981, data_manager.py, 108, INFO, Getting stock price data for HBAN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:24,981, data_manager.py, 108, INFO, Getting stock price data for HBAN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:04,256, data_manager.py, 82, INFO, Saving data for HBAN by year\n", + "2024-10-23 21:18:04,256, data_manager.py, 82, INFO, Saving data for HBAN by year\n", + "2024-10-23 21:18:05,035, data_manager.py, 73, INFO, Processing ticker HII\n", + "2024-10-23 21:18:05,035, data_manager.py, 73, INFO, Processing ticker HII\n", + "2024-10-23 21:18:05,037, data_manager.py, 108, INFO, Getting stock price data for HII from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:05,037, data_manager.py, 108, INFO, Getting stock price data for HII from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:05,768, data_manager.py, 82, INFO, Saving data for HII by year\n", + "2024-10-23 21:18:05,768, data_manager.py, 82, INFO, Saving data for HII by year\n", + "2024-10-23 21:18:06,320, data_manager.py, 73, INFO, Processing ticker IBM\n", + "2024-10-23 21:18:06,320, data_manager.py, 73, INFO, Processing ticker IBM\n", + "2024-10-23 21:18:06,321, data_manager.py, 108, INFO, Getting stock price data for IBM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:06,321, data_manager.py, 108, INFO, Getting stock price data for IBM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:06,648, data_manager.py, 82, INFO, Saving data for IBM by year\n", + "2024-10-23 21:18:06,648, data_manager.py, 82, INFO, Saving data for IBM by year\n", + "2024-10-23 21:18:07,655, data_manager.py, 73, INFO, Processing ticker IEX\n", + "2024-10-23 21:18:07,655, data_manager.py, 73, INFO, Processing ticker IEX\n", + "2024-10-23 21:18:07,656, data_manager.py, 108, INFO, Getting stock price data for IEX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:07,656, data_manager.py, 108, INFO, Getting stock price data for IEX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:07,905, data_manager.py, 82, INFO, Saving data for IEX by year\n", + "2024-10-23 21:18:07,905, data_manager.py, 82, INFO, Saving data for IEX by year\n", + "2024-10-23 21:18:09,245, data_manager.py, 73, INFO, Processing ticker IDXX\n", + "2024-10-23 21:18:09,245, data_manager.py, 73, INFO, Processing ticker IDXX\n", + "2024-10-23 21:18:09,248, data_manager.py, 108, INFO, Getting stock price data for IDXX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:09,248, data_manager.py, 108, INFO, Getting stock price data for IDXX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:09,420, data_manager.py, 82, INFO, Saving data for IDXX by year\n", + "2024-10-23 21:18:09,420, data_manager.py, 82, INFO, Saving data for IDXX by year\n", + "2024-10-23 21:18:10,454, data_manager.py, 73, INFO, Processing ticker ITW\n", + "2024-10-23 21:18:10,454, data_manager.py, 73, INFO, Processing ticker ITW\n", + "2024-10-23 21:18:10,457, data_manager.py, 108, INFO, Getting stock price data for ITW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:10,457, data_manager.py, 108, INFO, Getting stock price data for ITW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:10,682, data_manager.py, 82, INFO, Saving data for ITW by year\n", + "2024-10-23 21:18:10,682, data_manager.py, 82, INFO, Saving data for ITW by year\n", + "2024-10-23 21:18:11,565, data_manager.py, 73, INFO, Processing ticker ILMN\n", + "2024-10-23 21:18:11,565, data_manager.py, 73, INFO, Processing ticker ILMN\n", + "2024-10-23 21:18:11,566, data_manager.py, 108, INFO, Getting stock price data for ILMN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:11,566, data_manager.py, 108, INFO, Getting stock price data for ILMN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:11,768, data_manager.py, 82, INFO, Saving data for ILMN by year\n", + "2024-10-23 21:18:11,768, data_manager.py, 82, INFO, Saving data for ILMN by year\n", + "2024-10-23 21:18:12,630, data_manager.py, 73, INFO, Processing ticker INCY\n", + "2024-10-23 21:18:12,630, data_manager.py, 73, INFO, Processing ticker INCY\n", + "2024-10-23 21:18:12,631, data_manager.py, 108, INFO, Getting stock price data for INCY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:12,631, data_manager.py, 108, INFO, Getting stock price data for INCY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:12,802, data_manager.py, 82, INFO, Saving data for INCY by year\n", + "2024-10-23 21:18:12,802, data_manager.py, 82, INFO, Saving data for INCY by year\n", + "2024-10-23 21:18:35,029, data_manager.py, 73, INFO, Processing ticker IR\n", + "2024-10-23 21:18:35,029, data_manager.py, 73, INFO, Processing ticker IR\n", + "2024-10-23 21:18:35,031, data_manager.py, 108, INFO, Getting stock price data for IR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:35,031, data_manager.py, 108, INFO, Getting stock price data for IR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:14,126, data_manager.py, 82, INFO, Saving data for IR by year\n", + "2024-10-23 21:18:14,126, data_manager.py, 82, INFO, Saving data for IR by year\n", + "2024-10-23 21:18:14,409, data_manager.py, 73, INFO, Processing ticker PODD\n", + "2024-10-23 21:18:14,409, data_manager.py, 73, INFO, Processing ticker PODD\n", + "2024-10-23 21:18:14,410, data_manager.py, 108, INFO, Getting stock price data for PODD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:14,410, data_manager.py, 108, INFO, Getting stock price data for PODD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:14,618, data_manager.py, 82, INFO, Saving data for PODD by year\n", + "2024-10-23 21:18:14,618, data_manager.py, 82, INFO, Saving data for PODD by year\n", + "2024-10-23 21:18:15,323, data_manager.py, 73, INFO, Processing ticker INTC\n", + "2024-10-23 21:18:15,323, data_manager.py, 73, INFO, Processing ticker INTC\n", + "2024-10-23 21:18:15,325, data_manager.py, 108, INFO, Getting stock price data for INTC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:15,325, data_manager.py, 108, INFO, Getting stock price data for INTC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:15,624, data_manager.py, 82, INFO, Saving data for INTC by year\n", + "2024-10-23 21:18:15,624, data_manager.py, 82, INFO, Saving data for INTC by year\n", + "2024-10-23 21:18:16,553, data_manager.py, 73, INFO, Processing ticker ICE\n", + "2024-10-23 21:18:16,553, data_manager.py, 73, INFO, Processing ticker ICE\n", + "2024-10-23 21:18:16,554, data_manager.py, 108, INFO, Getting stock price data for ICE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:16,554, data_manager.py, 108, INFO, Getting stock price data for ICE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:16,735, data_manager.py, 82, INFO, Saving data for ICE by year\n", + "2024-10-23 21:18:16,735, data_manager.py, 82, INFO, Saving data for ICE by year\n", + "2024-10-23 21:18:17,441, data_manager.py, 73, INFO, Processing ticker IFF\n", + "2024-10-23 21:18:17,441, data_manager.py, 73, INFO, Processing ticker IFF\n", + "2024-10-23 21:18:17,443, data_manager.py, 108, INFO, Getting stock price data for IFF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:17,443, data_manager.py, 108, INFO, Getting stock price data for IFF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:17,759, data_manager.py, 82, INFO, Saving data for IFF by year\n", + "2024-10-23 21:18:17,759, data_manager.py, 82, INFO, Saving data for IFF by year\n", + "2024-10-23 21:18:18,711, data_manager.py, 73, INFO, Processing ticker IP\n", + "2024-10-23 21:18:18,711, data_manager.py, 73, INFO, Processing ticker IP\n", + "2024-10-23 21:18:18,712, data_manager.py, 108, INFO, Getting stock price data for IP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:18,712, data_manager.py, 108, INFO, Getting stock price data for IP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:40,045, data_manager.py, 82, INFO, Saving data for IP by year\n", + "2024-10-23 21:18:40,045, data_manager.py, 82, INFO, Saving data for IP by year\n", + "2024-10-23 21:18:20,124, data_manager.py, 73, INFO, Processing ticker IPG\n", + "2024-10-23 21:18:20,124, data_manager.py, 73, INFO, Processing ticker IPG\n", + "2024-10-23 21:18:20,125, data_manager.py, 108, INFO, Getting stock price data for IPG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:20,125, data_manager.py, 108, INFO, Getting stock price data for IPG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:20,362, data_manager.py, 82, INFO, Saving data for IPG by year\n", + "2024-10-23 21:18:20,362, data_manager.py, 82, INFO, Saving data for IPG by year\n", + "2024-10-23 21:18:21,406, data_manager.py, 73, INFO, Processing ticker INTU\n", + "2024-10-23 21:18:21,406, data_manager.py, 73, INFO, Processing ticker INTU\n", + "2024-10-23 21:18:21,407, data_manager.py, 108, INFO, Getting stock price data for INTU from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:21,407, data_manager.py, 108, INFO, Getting stock price data for INTU from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:21,660, data_manager.py, 82, INFO, Saving data for INTU by year\n", + "2024-10-23 21:18:21,660, data_manager.py, 82, INFO, Saving data for INTU by year\n", + "2024-10-23 21:18:22,883, data_manager.py, 73, INFO, Processing ticker ISRG\n", + "2024-10-23 21:18:22,883, data_manager.py, 73, INFO, Processing ticker ISRG\n", + "2024-10-23 21:18:22,884, data_manager.py, 108, INFO, Getting stock price data for ISRG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:22,884, data_manager.py, 108, INFO, Getting stock price data for ISRG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:23,148, data_manager.py, 82, INFO, Saving data for ISRG by year\n", + "2024-10-23 21:18:23,148, data_manager.py, 82, INFO, Saving data for ISRG by year\n", + "2024-10-23 21:18:24,240, data_manager.py, 73, INFO, Processing ticker IVZ\n", + "2024-10-23 21:18:24,240, data_manager.py, 73, INFO, Processing ticker IVZ\n", + "2024-10-23 21:18:24,242, data_manager.py, 108, INFO, Getting stock price data for IVZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:24,242, data_manager.py, 108, INFO, Getting stock price data for IVZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:24,486, data_manager.py, 82, INFO, Saving data for IVZ by year\n", + "2024-10-23 21:18:24,486, data_manager.py, 82, INFO, Saving data for IVZ by year\n", + "2024-10-23 21:18:25,342, data_manager.py, 73, INFO, Processing ticker INVH\n", + "2024-10-23 21:18:25,342, data_manager.py, 73, INFO, Processing ticker INVH\n", + "2024-10-23 21:18:25,344, data_manager.py, 108, INFO, Getting stock price data for INVH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:25,344, data_manager.py, 108, INFO, Getting stock price data for INVH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:25,525, data_manager.py, 82, INFO, Saving data for INVH by year\n", + "2024-10-23 21:18:25,525, data_manager.py, 82, INFO, Saving data for INVH by year\n", + "2024-10-23 21:18:25,831, data_manager.py, 73, INFO, Processing ticker IQV\n", + "2024-10-23 21:18:25,831, data_manager.py, 73, INFO, Processing ticker IQV\n", + "2024-10-23 21:18:25,832, data_manager.py, 108, INFO, Getting stock price data for IQV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:25,832, data_manager.py, 108, INFO, Getting stock price data for IQV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:25,943, data_manager.py, 82, INFO, Saving data for IQV by year\n", + "2024-10-23 21:18:25,943, data_manager.py, 82, INFO, Saving data for IQV by year\n", + "2024-10-23 21:18:26,381, data_manager.py, 73, INFO, Processing ticker IRM\n", + "2024-10-23 21:18:26,381, data_manager.py, 73, INFO, Processing ticker IRM\n", + "2024-10-23 21:18:26,383, data_manager.py, 108, INFO, Getting stock price data for IRM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:26,383, data_manager.py, 108, INFO, Getting stock price data for IRM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:26,593, data_manager.py, 82, INFO, Saving data for IRM by year\n", + "2024-10-23 21:18:26,593, data_manager.py, 82, INFO, Saving data for IRM by year\n", + "2024-10-23 21:18:28,039, data_manager.py, 73, INFO, Processing ticker JBHT\n", + "2024-10-23 21:18:28,039, data_manager.py, 73, INFO, Processing ticker JBHT\n", + "2024-10-23 21:18:28,041, data_manager.py, 108, INFO, Getting stock price data for JBHT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:28,041, data_manager.py, 108, INFO, Getting stock price data for JBHT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:28,285, data_manager.py, 82, INFO, Saving data for JBHT by year\n", + "2024-10-23 21:18:28,285, data_manager.py, 82, INFO, Saving data for JBHT by year\n", + "2024-10-23 21:18:29,462, data_manager.py, 73, INFO, Processing ticker JBL\n", + "2024-10-23 21:18:29,462, data_manager.py, 73, INFO, Processing ticker JBL\n", + "2024-10-23 21:18:29,464, data_manager.py, 108, INFO, Getting stock price data for JBL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:29,464, data_manager.py, 108, INFO, Getting stock price data for JBL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:29,692, data_manager.py, 82, INFO, Saving data for JBL by year\n", + "2024-10-23 21:18:29,692, data_manager.py, 82, INFO, Saving data for JBL by year\n", + "2024-10-23 21:18:30,739, data_manager.py, 73, INFO, Processing ticker JKHY\n", + "2024-10-23 21:18:30,739, data_manager.py, 73, INFO, Processing ticker JKHY\n", + "2024-10-23 21:18:30,740, data_manager.py, 108, INFO, Getting stock price data for JKHY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:30,740, data_manager.py, 108, INFO, Getting stock price data for JKHY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:30,998, data_manager.py, 82, INFO, Saving data for JKHY by year\n", + "2024-10-23 21:18:30,998, data_manager.py, 82, INFO, Saving data for JKHY by year\n", + "2024-10-23 21:18:32,019, data_manager.py, 73, INFO, Processing ticker J\n", + "2024-10-23 21:18:32,019, data_manager.py, 73, INFO, Processing ticker J\n", + "2024-10-23 21:18:32,020, data_manager.py, 108, INFO, Getting stock price data for J from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:32,020, data_manager.py, 108, INFO, Getting stock price data for J from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:32,372, data_manager.py, 82, INFO, Saving data for J by year\n", + "2024-10-23 21:18:32,372, data_manager.py, 82, INFO, Saving data for J by year\n", + "2024-10-23 21:18:33,469, data_manager.py, 73, INFO, Processing ticker JNJ\n", + "2024-10-23 21:18:33,469, data_manager.py, 73, INFO, Processing ticker JNJ\n", + "2024-10-23 21:18:33,470, data_manager.py, 108, INFO, Getting stock price data for JNJ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:33,470, data_manager.py, 108, INFO, Getting stock price data for JNJ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:33,823, data_manager.py, 82, INFO, Saving data for JNJ by year\n", + "2024-10-23 21:18:33,823, data_manager.py, 82, INFO, Saving data for JNJ by year\n", + "2024-10-23 21:18:34,608, data_manager.py, 73, INFO, Processing ticker JCI\n", + "2024-10-23 21:18:34,608, data_manager.py, 73, INFO, Processing ticker JCI\n", + "2024-10-23 21:18:34,609, data_manager.py, 108, INFO, Getting stock price data for JCI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:34,609, data_manager.py, 108, INFO, Getting stock price data for JCI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:34,903, data_manager.py, 82, INFO, Saving data for JCI by year\n", + "2024-10-23 21:18:34,903, data_manager.py, 82, INFO, Saving data for JCI by year\n", + "2024-10-23 21:18:35,951, data_manager.py, 73, INFO, Processing ticker JPM\n", + "2024-10-23 21:18:35,951, data_manager.py, 73, INFO, Processing ticker JPM\n", + "2024-10-23 21:18:35,952, data_manager.py, 108, INFO, Getting stock price data for JPM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:35,952, data_manager.py, 108, INFO, Getting stock price data for JPM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:36,208, data_manager.py, 82, INFO, Saving data for JPM by year\n", + "2024-10-23 21:18:36,208, data_manager.py, 82, INFO, Saving data for JPM by year\n", + "2024-10-23 21:18:37,546, data_manager.py, 73, INFO, Processing ticker JNPR\n", + "2024-10-23 21:18:37,546, data_manager.py, 73, INFO, Processing ticker JNPR\n", + "2024-10-23 21:18:37,548, data_manager.py, 108, INFO, Getting stock price data for JNPR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:37,548, data_manager.py, 108, INFO, Getting stock price data for JNPR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:37,839, data_manager.py, 82, INFO, Saving data for JNPR by year\n", + "2024-10-23 21:18:37,839, data_manager.py, 82, INFO, Saving data for JNPR by year\n", + "2024-10-23 21:19:00,158, data_manager.py, 73, INFO, Processing ticker K\n", + "2024-10-23 21:19:00,158, data_manager.py, 73, INFO, Processing ticker K\n", + "2024-10-23 21:19:00,160, data_manager.py, 108, INFO, Getting stock price data for K from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:00,160, data_manager.py, 108, INFO, Getting stock price data for K from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:39,395, data_manager.py, 82, INFO, Saving data for K by year\n", + "2024-10-23 21:18:39,395, data_manager.py, 82, INFO, Saving data for K by year\n", + "2024-10-23 21:18:40,373, data_manager.py, 73, INFO, Processing ticker KVUE\n", + "2024-10-23 21:18:40,373, data_manager.py, 73, INFO, Processing ticker KVUE\n", + "2024-10-23 21:18:40,374, data_manager.py, 108, INFO, Getting stock price data for KVUE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:40,374, data_manager.py, 108, INFO, Getting stock price data for KVUE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:40,453, data_manager.py, 82, INFO, Saving data for KVUE by year\n", + "2024-10-23 21:18:40,453, data_manager.py, 82, INFO, Saving data for KVUE by year\n", + "2024-10-23 21:18:40,538, data_manager.py, 73, INFO, Processing ticker KDP\n", + "2024-10-23 21:18:40,538, data_manager.py, 73, INFO, Processing ticker KDP\n", + "2024-10-23 21:18:40,539, data_manager.py, 108, INFO, Getting stock price data for KDP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:40,539, data_manager.py, 108, INFO, Getting stock price data for KDP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:40,686, data_manager.py, 82, INFO, Saving data for KDP by year\n", + "2024-10-23 21:18:40,686, data_manager.py, 82, INFO, Saving data for KDP by year\n", + "2024-10-23 21:18:41,311, data_manager.py, 73, INFO, Processing ticker KEY\n", + "2024-10-23 21:18:41,311, data_manager.py, 73, INFO, Processing ticker KEY\n", + "2024-10-23 21:18:41,312, data_manager.py, 108, INFO, Getting stock price data for KEY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:41,312, data_manager.py, 108, INFO, Getting stock price data for KEY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:41,557, data_manager.py, 82, INFO, Saving data for KEY by year\n", + "2024-10-23 21:18:41,557, data_manager.py, 82, INFO, Saving data for KEY by year\n", + "2024-10-23 21:18:42,791, data_manager.py, 73, INFO, Processing ticker KEYS\n", + "2024-10-23 21:18:42,791, data_manager.py, 73, INFO, Processing ticker KEYS\n", + "2024-10-23 21:18:42,794, data_manager.py, 108, INFO, Getting stock price data for KEYS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:42,794, data_manager.py, 108, INFO, Getting stock price data for KEYS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:42,910, data_manager.py, 82, INFO, Saving data for KEYS by year\n", + "2024-10-23 21:18:42,910, data_manager.py, 82, INFO, Saving data for KEYS by year\n", + "2024-10-23 21:18:43,478, data_manager.py, 73, INFO, Processing ticker KMB\n", + "2024-10-23 21:18:43,478, data_manager.py, 73, INFO, Processing ticker KMB\n", + "2024-10-23 21:18:43,479, data_manager.py, 108, INFO, Getting stock price data for KMB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:43,479, data_manager.py, 108, INFO, Getting stock price data for KMB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:43,737, data_manager.py, 82, INFO, Saving data for KMB by year\n", + "2024-10-23 21:18:43,737, data_manager.py, 82, INFO, Saving data for KMB by year\n", + "2024-10-23 21:18:44,910, data_manager.py, 73, INFO, Processing ticker KIM\n", + "2024-10-23 21:18:44,910, data_manager.py, 73, INFO, Processing ticker KIM\n", + "2024-10-23 21:18:44,911, data_manager.py, 108, INFO, Getting stock price data for KIM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:44,911, data_manager.py, 108, INFO, Getting stock price data for KIM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:45,185, data_manager.py, 82, INFO, Saving data for KIM by year\n", + "2024-10-23 21:18:45,185, data_manager.py, 82, INFO, Saving data for KIM by year\n", + "2024-10-23 21:18:46,259, data_manager.py, 73, INFO, Processing ticker KMI\n", + "2024-10-23 21:18:46,259, data_manager.py, 73, INFO, Processing ticker KMI\n", + "2024-10-23 21:18:46,261, data_manager.py, 108, INFO, Getting stock price data for KMI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:46,261, data_manager.py, 108, INFO, Getting stock price data for KMI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:46,419, data_manager.py, 82, INFO, Saving data for KMI by year\n", + "2024-10-23 21:18:46,419, data_manager.py, 82, INFO, Saving data for KMI by year\n", + "2024-10-23 21:18:46,925, data_manager.py, 73, INFO, Processing ticker KLAC\n", + "2024-10-23 21:18:46,925, data_manager.py, 73, INFO, Processing ticker KLAC\n", + "2024-10-23 21:18:46,927, data_manager.py, 108, INFO, Getting stock price data for KLAC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:46,927, data_manager.py, 108, INFO, Getting stock price data for KLAC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:47,141, data_manager.py, 82, INFO, Saving data for KLAC by year\n", + "2024-10-23 21:18:47,141, data_manager.py, 82, INFO, Saving data for KLAC by year\n", + "2024-10-23 21:18:48,399, data_manager.py, 73, INFO, Processing ticker KHC\n", + "2024-10-23 21:18:48,399, data_manager.py, 73, INFO, Processing ticker KHC\n", + "2024-10-23 21:18:48,401, data_manager.py, 108, INFO, Getting stock price data for KHC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:48,401, data_manager.py, 108, INFO, Getting stock price data for KHC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:48,519, data_manager.py, 82, INFO, Saving data for KHC by year\n", + "2024-10-23 21:18:48,519, data_manager.py, 82, INFO, Saving data for KHC by year\n", + "2024-10-23 21:19:10,115, data_manager.py, 73, INFO, Processing ticker KR\n", + "2024-10-23 21:19:10,115, data_manager.py, 73, INFO, Processing ticker KR\n", + "2024-10-23 21:19:10,116, data_manager.py, 108, INFO, Getting stock price data for KR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:10,116, data_manager.py, 108, INFO, Getting stock price data for KR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:49,380, data_manager.py, 82, INFO, Saving data for KR by year\n", + "2024-10-23 21:18:49,380, data_manager.py, 82, INFO, Saving data for KR by year\n", + "2024-10-23 21:18:50,254, data_manager.py, 73, INFO, Processing ticker LHX\n", + "2024-10-23 21:18:50,254, data_manager.py, 73, INFO, Processing ticker LHX\n", + "2024-10-23 21:18:50,255, data_manager.py, 108, INFO, Getting stock price data for LHX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:50,255, data_manager.py, 108, INFO, Getting stock price data for LHX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:50,516, data_manager.py, 82, INFO, Saving data for LHX by year\n", + "2024-10-23 21:18:50,516, data_manager.py, 82, INFO, Saving data for LHX by year\n", + "2024-10-23 21:18:51,523, data_manager.py, 73, INFO, Processing ticker LH\n", + "2024-10-23 21:18:51,523, data_manager.py, 73, INFO, Processing ticker LH\n", + "2024-10-23 21:18:51,524, data_manager.py, 108, INFO, Getting stock price data for LH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:51,524, data_manager.py, 108, INFO, Getting stock price data for LH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:51,738, data_manager.py, 82, INFO, Saving data for LH by year\n", + "2024-10-23 21:18:51,738, data_manager.py, 82, INFO, Saving data for LH by year\n", + "2024-10-23 21:18:52,802, data_manager.py, 73, INFO, Processing ticker LRCX\n", + "2024-10-23 21:18:52,802, data_manager.py, 73, INFO, Processing ticker LRCX\n", + "2024-10-23 21:18:52,803, data_manager.py, 108, INFO, Getting stock price data for LRCX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:52,803, data_manager.py, 108, INFO, Getting stock price data for LRCX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:52,994, data_manager.py, 82, INFO, Saving data for LRCX by year\n", + "2024-10-23 21:18:52,994, data_manager.py, 82, INFO, Saving data for LRCX by year\n", + "2024-10-23 21:18:53,901, data_manager.py, 73, INFO, Processing ticker LW\n", + "2024-10-23 21:18:53,901, data_manager.py, 73, INFO, Processing ticker LW\n", + "2024-10-23 21:18:53,902, data_manager.py, 108, INFO, Getting stock price data for LW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:53,902, data_manager.py, 108, INFO, Getting stock price data for LW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:54,037, data_manager.py, 82, INFO, Saving data for LW by year\n", + "2024-10-23 21:18:54,037, data_manager.py, 82, INFO, Saving data for LW by year\n", + "2024-10-23 21:18:54,363, data_manager.py, 73, INFO, Processing ticker LVS\n", + "2024-10-23 21:18:54,363, data_manager.py, 73, INFO, Processing ticker LVS\n", + "2024-10-23 21:18:54,364, data_manager.py, 108, INFO, Getting stock price data for LVS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:54,364, data_manager.py, 108, INFO, Getting stock price data for LVS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:54,569, data_manager.py, 82, INFO, Saving data for LVS by year\n", + "2024-10-23 21:18:54,569, data_manager.py, 82, INFO, Saving data for LVS by year\n", + "2024-10-23 21:18:55,371, data_manager.py, 73, INFO, Processing ticker LDOS\n", + "2024-10-23 21:18:55,371, data_manager.py, 73, INFO, Processing ticker LDOS\n", + "2024-10-23 21:18:55,372, data_manager.py, 108, INFO, Getting stock price data for LDOS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:55,372, data_manager.py, 108, INFO, Getting stock price data for LDOS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:55,552, data_manager.py, 82, INFO, Saving data for LDOS by year\n", + "2024-10-23 21:18:55,552, data_manager.py, 82, INFO, Saving data for LDOS by year\n", + "2024-10-23 21:18:56,260, data_manager.py, 73, INFO, Processing ticker LEN\n", + "2024-10-23 21:18:56,260, data_manager.py, 73, INFO, Processing ticker LEN\n", + "2024-10-23 21:18:56,261, data_manager.py, 108, INFO, Getting stock price data for LEN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:56,261, data_manager.py, 108, INFO, Getting stock price data for LEN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:56,550, data_manager.py, 82, INFO, Saving data for LEN by year\n", + "2024-10-23 21:18:56,550, data_manager.py, 82, INFO, Saving data for LEN by year\n", + "2024-10-23 21:18:57,656, data_manager.py, 73, INFO, Processing ticker LIN\n", + "2024-10-23 21:18:57,656, data_manager.py, 73, INFO, Processing ticker LIN\n", + "2024-10-23 21:18:57,657, data_manager.py, 108, INFO, Getting stock price data for LIN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:57,657, data_manager.py, 108, INFO, Getting stock price data for LIN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:57,884, data_manager.py, 82, INFO, Saving data for LIN by year\n", + "2024-10-23 21:18:57,884, data_manager.py, 82, INFO, Saving data for LIN by year\n", + "2024-10-23 21:18:58,773, data_manager.py, 73, INFO, Processing ticker LYV\n", + "2024-10-23 21:18:58,773, data_manager.py, 73, INFO, Processing ticker LYV\n", + "2024-10-23 21:18:58,774, data_manager.py, 108, INFO, Getting stock price data for LYV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:58,774, data_manager.py, 108, INFO, Getting stock price data for LYV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:58,907, data_manager.py, 82, INFO, Saving data for LYV by year\n", + "2024-10-23 21:18:58,907, data_manager.py, 82, INFO, Saving data for LYV by year\n", + "2024-10-23 21:18:59,632, data_manager.py, 73, INFO, Processing ticker LKQ\n", + "2024-10-23 21:18:59,632, data_manager.py, 73, INFO, Processing ticker LKQ\n", + "2024-10-23 21:18:59,634, data_manager.py, 108, INFO, Getting stock price data for LKQ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:18:59,634, data_manager.py, 108, INFO, Getting stock price data for LKQ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:18:59,841, data_manager.py, 82, INFO, Saving data for LKQ by year\n", + "2024-10-23 21:18:59,841, data_manager.py, 82, INFO, Saving data for LKQ by year\n", + "2024-10-23 21:19:00,727, data_manager.py, 73, INFO, Processing ticker LMT\n", + "2024-10-23 21:19:00,727, data_manager.py, 73, INFO, Processing ticker LMT\n", + "2024-10-23 21:19:00,728, data_manager.py, 108, INFO, Getting stock price data for LMT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:00,728, data_manager.py, 108, INFO, Getting stock price data for LMT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:00,928, data_manager.py, 82, INFO, Saving data for LMT by year\n", + "2024-10-23 21:19:00,928, data_manager.py, 82, INFO, Saving data for LMT by year\n", + "2024-10-23 21:19:01,952, data_manager.py, 73, INFO, Processing ticker L\n", + "2024-10-23 21:19:01,952, data_manager.py, 73, INFO, Processing ticker L\n", + "2024-10-23 21:19:01,953, data_manager.py, 108, INFO, Getting stock price data for L from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:01,953, data_manager.py, 108, INFO, Getting stock price data for L from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:02,317, data_manager.py, 82, INFO, Saving data for L by year\n", + "2024-10-23 21:19:02,317, data_manager.py, 82, INFO, Saving data for L by year\n", + "2024-10-23 21:19:03,286, data_manager.py, 73, INFO, Processing ticker LOW\n", + "2024-10-23 21:19:03,286, data_manager.py, 73, INFO, Processing ticker LOW\n", + "2024-10-23 21:19:03,287, data_manager.py, 108, INFO, Getting stock price data for LOW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:03,287, data_manager.py, 108, INFO, Getting stock price data for LOW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:03,502, data_manager.py, 82, INFO, Saving data for LOW by year\n", + "2024-10-23 21:19:03,502, data_manager.py, 82, INFO, Saving data for LOW by year\n", + "2024-10-23 21:19:04,396, data_manager.py, 73, INFO, Processing ticker LULU\n", + "2024-10-23 21:19:04,396, data_manager.py, 73, INFO, Processing ticker LULU\n", + "2024-10-23 21:19:04,397, data_manager.py, 108, INFO, Getting stock price data for LULU from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:04,397, data_manager.py, 108, INFO, Getting stock price data for LULU from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:04,546, data_manager.py, 82, INFO, Saving data for LULU by year\n", + "2024-10-23 21:19:04,546, data_manager.py, 82, INFO, Saving data for LULU by year\n", + "2024-10-23 21:19:05,288, data_manager.py, 73, INFO, Processing ticker LYB\n", + "2024-10-23 21:19:05,288, data_manager.py, 73, INFO, Processing ticker LYB\n", + "2024-10-23 21:19:05,289, data_manager.py, 108, INFO, Getting stock price data for LYB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:05,289, data_manager.py, 108, INFO, Getting stock price data for LYB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:05,470, data_manager.py, 82, INFO, Saving data for LYB by year\n", + "2024-10-23 21:19:05,470, data_manager.py, 82, INFO, Saving data for LYB by year\n", + "2024-10-23 21:19:05,991, data_manager.py, 73, INFO, Processing ticker MTB\n", + "2024-10-23 21:19:05,991, data_manager.py, 73, INFO, Processing ticker MTB\n", + "2024-10-23 21:19:05,992, data_manager.py, 108, INFO, Getting stock price data for MTB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:05,992, data_manager.py, 108, INFO, Getting stock price data for MTB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:06,337, data_manager.py, 82, INFO, Saving data for MTB by year\n", + "2024-10-23 21:19:06,337, data_manager.py, 82, INFO, Saving data for MTB by year\n", + "2024-10-23 21:19:07,264, data_manager.py, 73, INFO, Processing ticker MRO\n", + "2024-10-23 21:19:07,264, data_manager.py, 73, INFO, Processing ticker MRO\n", + "2024-10-23 21:19:07,266, data_manager.py, 108, INFO, Getting stock price data for MRO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:07,266, data_manager.py, 108, INFO, Getting stock price data for MRO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:07,568, data_manager.py, 82, INFO, Saving data for MRO by year\n", + "2024-10-23 21:19:07,568, data_manager.py, 82, INFO, Saving data for MRO by year\n", + "2024-10-23 21:19:08,722, data_manager.py, 73, INFO, Processing ticker MPC\n", + "2024-10-23 21:19:08,722, data_manager.py, 73, INFO, Processing ticker MPC\n", + "2024-10-23 21:19:08,723, data_manager.py, 108, INFO, Getting stock price data for MPC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:08,723, data_manager.py, 108, INFO, Getting stock price data for MPC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:08,871, data_manager.py, 82, INFO, Saving data for MPC by year\n", + "2024-10-23 21:19:08,871, data_manager.py, 82, INFO, Saving data for MPC by year\n", + "2024-10-23 21:19:09,355, data_manager.py, 73, INFO, Processing ticker MKTX\n", + "2024-10-23 21:19:09,355, data_manager.py, 73, INFO, Processing ticker MKTX\n", + "2024-10-23 21:19:09,358, data_manager.py, 108, INFO, Getting stock price data for MKTX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:09,358, data_manager.py, 108, INFO, Getting stock price data for MKTX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:09,533, data_manager.py, 82, INFO, Saving data for MKTX by year\n", + "2024-10-23 21:19:09,533, data_manager.py, 82, INFO, Saving data for MKTX by year\n", + "2024-10-23 21:19:10,361, data_manager.py, 73, INFO, Processing ticker MAR\n", + "2024-10-23 21:19:10,361, data_manager.py, 73, INFO, Processing ticker MAR\n", + "2024-10-23 21:19:10,362, data_manager.py, 108, INFO, Getting stock price data for MAR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:10,362, data_manager.py, 108, INFO, Getting stock price data for MAR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:10,662, data_manager.py, 82, INFO, Saving data for MAR by year\n", + "2024-10-23 21:19:10,662, data_manager.py, 82, INFO, Saving data for MAR by year\n", + "2024-10-23 21:19:11,550, data_manager.py, 73, INFO, Processing ticker MMC\n", + "2024-10-23 21:19:11,550, data_manager.py, 73, INFO, Processing ticker MMC\n", + "2024-10-23 21:19:11,551, data_manager.py, 108, INFO, Getting stock price data for MMC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:11,551, data_manager.py, 108, INFO, Getting stock price data for MMC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:11,903, data_manager.py, 82, INFO, Saving data for MMC by year\n", + "2024-10-23 21:19:11,903, data_manager.py, 82, INFO, Saving data for MMC by year\n", + "2024-10-23 21:19:12,724, data_manager.py, 73, INFO, Processing ticker MLM\n", + "2024-10-23 21:19:12,724, data_manager.py, 73, INFO, Processing ticker MLM\n", + "2024-10-23 21:19:12,725, data_manager.py, 108, INFO, Getting stock price data for MLM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:12,725, data_manager.py, 108, INFO, Getting stock price data for MLM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:12,990, data_manager.py, 82, INFO, Saving data for MLM by year\n", + "2024-10-23 21:19:12,990, data_manager.py, 82, INFO, Saving data for MLM by year\n", + "2024-10-23 21:19:13,810, data_manager.py, 73, INFO, Processing ticker MAS\n", + "2024-10-23 21:19:13,810, data_manager.py, 73, INFO, Processing ticker MAS\n", + "2024-10-23 21:19:13,811, data_manager.py, 108, INFO, Getting stock price data for MAS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:13,811, data_manager.py, 108, INFO, Getting stock price data for MAS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:14,110, data_manager.py, 82, INFO, Saving data for MAS by year\n", + "2024-10-23 21:19:14,110, data_manager.py, 82, INFO, Saving data for MAS by year\n", + "2024-10-23 21:19:14,956, data_manager.py, 73, INFO, Processing ticker MA\n", + "2024-10-23 21:19:14,956, data_manager.py, 73, INFO, Processing ticker MA\n", + "2024-10-23 21:19:14,958, data_manager.py, 108, INFO, Getting stock price data for MA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:14,958, data_manager.py, 108, INFO, Getting stock price data for MA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:15,164, data_manager.py, 82, INFO, Saving data for MA by year\n", + "2024-10-23 21:19:15,164, data_manager.py, 82, INFO, Saving data for MA by year\n", + "2024-10-23 21:19:15,788, data_manager.py, 73, INFO, Processing ticker MTCH\n", + "2024-10-23 21:19:15,788, data_manager.py, 73, INFO, Processing ticker MTCH\n", + "2024-10-23 21:19:15,789, data_manager.py, 108, INFO, Getting stock price data for MTCH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:15,789, data_manager.py, 108, INFO, Getting stock price data for MTCH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:16,122, data_manager.py, 82, INFO, Saving data for MTCH by year\n", + "2024-10-23 21:19:16,122, data_manager.py, 82, INFO, Saving data for MTCH by year\n", + "2024-10-23 21:19:17,163, data_manager.py, 73, INFO, Processing ticker MKC\n", + "2024-10-23 21:19:17,163, data_manager.py, 73, INFO, Processing ticker MKC\n", + "2024-10-23 21:19:17,164, data_manager.py, 108, INFO, Getting stock price data for MKC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:17,164, data_manager.py, 108, INFO, Getting stock price data for MKC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:17,407, data_manager.py, 82, INFO, Saving data for MKC by year\n", + "2024-10-23 21:19:17,407, data_manager.py, 82, INFO, Saving data for MKC by year\n", + "2024-10-23 21:19:18,238, data_manager.py, 73, INFO, Processing ticker MCD\n", + "2024-10-23 21:19:18,238, data_manager.py, 73, INFO, Processing ticker MCD\n", + "2024-10-23 21:19:18,240, data_manager.py, 108, INFO, Getting stock price data for MCD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:18,240, data_manager.py, 108, INFO, Getting stock price data for MCD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:18,526, data_manager.py, 82, INFO, Saving data for MCD by year\n", + "2024-10-23 21:19:18,526, data_manager.py, 82, INFO, Saving data for MCD by year\n", + "2024-10-23 21:19:40,511, data_manager.py, 73, INFO, Processing ticker MCK\n", + "2024-10-23 21:19:40,511, data_manager.py, 73, INFO, Processing ticker MCK\n", + "2024-10-23 21:19:40,512, data_manager.py, 108, INFO, Getting stock price data for MCK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:40,512, data_manager.py, 108, INFO, Getting stock price data for MCK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:19,682, data_manager.py, 82, INFO, Saving data for MCK by year\n", + "2024-10-23 21:19:19,682, data_manager.py, 82, INFO, Saving data for MCK by year\n", + "2024-10-23 21:19:20,522, data_manager.py, 73, INFO, Processing ticker MDT\n", + "2024-10-23 21:19:20,522, data_manager.py, 73, INFO, Processing ticker MDT\n", + "2024-10-23 21:19:20,524, data_manager.py, 108, INFO, Getting stock price data for MDT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:20,524, data_manager.py, 108, INFO, Getting stock price data for MDT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:20,811, data_manager.py, 82, INFO, Saving data for MDT by year\n", + "2024-10-23 21:19:20,811, data_manager.py, 82, INFO, Saving data for MDT by year\n", + "2024-10-23 21:19:21,925, data_manager.py, 73, INFO, Processing ticker MRK\n", + "2024-10-23 21:19:21,925, data_manager.py, 73, INFO, Processing ticker MRK\n", + "2024-10-23 21:19:21,927, data_manager.py, 108, INFO, Getting stock price data for MRK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:21,927, data_manager.py, 108, INFO, Getting stock price data for MRK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:22,194, data_manager.py, 82, INFO, Saving data for MRK by year\n", + "2024-10-23 21:19:22,194, data_manager.py, 82, INFO, Saving data for MRK by year\n", + "2024-10-23 21:19:23,023, data_manager.py, 73, INFO, Processing ticker META\n", + "2024-10-23 21:19:23,023, data_manager.py, 73, INFO, Processing ticker META\n", + "2024-10-23 21:19:23,024, data_manager.py, 108, INFO, Getting stock price data for META from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:23,024, data_manager.py, 108, INFO, Getting stock price data for META from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:23,153, data_manager.py, 82, INFO, Saving data for META by year\n", + "2024-10-23 21:19:23,153, data_manager.py, 82, INFO, Saving data for META by year\n", + "2024-10-23 21:19:23,576, data_manager.py, 73, INFO, Processing ticker MET\n", + "2024-10-23 21:19:23,576, data_manager.py, 73, INFO, Processing ticker MET\n", + "2024-10-23 21:19:23,579, data_manager.py, 108, INFO, Getting stock price data for MET from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:23,579, data_manager.py, 108, INFO, Getting stock price data for MET from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:23,779, data_manager.py, 82, INFO, Saving data for MET by year\n", + "2024-10-23 21:19:23,779, data_manager.py, 82, INFO, Saving data for MET by year\n", + "2024-10-23 21:19:24,617, data_manager.py, 73, INFO, Processing ticker MTD\n", + "2024-10-23 21:19:24,617, data_manager.py, 73, INFO, Processing ticker MTD\n", + "2024-10-23 21:19:24,618, data_manager.py, 108, INFO, Getting stock price data for MTD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:24,618, data_manager.py, 108, INFO, Getting stock price data for MTD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:24,822, data_manager.py, 82, INFO, Saving data for MTD by year\n", + "2024-10-23 21:19:24,822, data_manager.py, 82, INFO, Saving data for MTD by year\n", + "2024-10-23 21:19:26,032, data_manager.py, 73, INFO, Processing ticker MGM\n", + "2024-10-23 21:19:26,032, data_manager.py, 73, INFO, Processing ticker MGM\n", + "2024-10-23 21:19:26,033, data_manager.py, 108, INFO, Getting stock price data for MGM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:26,033, data_manager.py, 108, INFO, Getting stock price data for MGM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:26,319, data_manager.py, 82, INFO, Saving data for MGM by year\n", + "2024-10-23 21:19:26,319, data_manager.py, 82, INFO, Saving data for MGM by year\n", + "2024-10-23 21:19:27,140, data_manager.py, 73, INFO, Processing ticker MCHP\n", + "2024-10-23 21:19:27,140, data_manager.py, 73, INFO, Processing ticker MCHP\n", + "2024-10-23 21:19:27,141, data_manager.py, 108, INFO, Getting stock price data for MCHP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:27,141, data_manager.py, 108, INFO, Getting stock price data for MCHP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:27,360, data_manager.py, 82, INFO, Saving data for MCHP by year\n", + "2024-10-23 21:19:27,360, data_manager.py, 82, INFO, Saving data for MCHP by year\n", + "2024-10-23 21:19:28,190, data_manager.py, 73, INFO, Processing ticker MU\n", + "2024-10-23 21:19:28,190, data_manager.py, 73, INFO, Processing ticker MU\n", + "2024-10-23 21:19:28,191, data_manager.py, 108, INFO, Getting stock price data for MU from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:28,191, data_manager.py, 108, INFO, Getting stock price data for MU from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:28,397, data_manager.py, 82, INFO, Saving data for MU by year\n", + "2024-10-23 21:19:28,397, data_manager.py, 82, INFO, Saving data for MU by year\n", + "2024-10-23 21:19:29,403, data_manager.py, 73, INFO, Processing ticker MSFT\n", + "2024-10-23 21:19:29,403, data_manager.py, 73, INFO, Processing ticker MSFT\n", + "2024-10-23 21:19:29,405, data_manager.py, 108, INFO, Getting stock price data for MSFT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:29,405, data_manager.py, 108, INFO, Getting stock price data for MSFT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:50,619, data_manager.py, 82, INFO, Saving data for MSFT by year\n", + "2024-10-23 21:19:50,619, data_manager.py, 82, INFO, Saving data for MSFT by year\n", + "2024-10-23 21:19:30,533, data_manager.py, 73, INFO, Processing ticker MAA\n", + "2024-10-23 21:19:30,533, data_manager.py, 73, INFO, Processing ticker MAA\n", + "2024-10-23 21:19:30,534, data_manager.py, 108, INFO, Getting stock price data for MAA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:30,534, data_manager.py, 108, INFO, Getting stock price data for MAA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:30,817, data_manager.py, 82, INFO, Saving data for MAA by year\n", + "2024-10-23 21:19:30,817, data_manager.py, 82, INFO, Saving data for MAA by year\n", + "2024-10-23 21:19:31,740, data_manager.py, 73, INFO, Processing ticker MRNA\n", + "2024-10-23 21:19:31,740, data_manager.py, 73, INFO, Processing ticker MRNA\n", + "2024-10-23 21:19:31,744, data_manager.py, 108, INFO, Getting stock price data for MRNA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:31,744, data_manager.py, 108, INFO, Getting stock price data for MRNA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:31,851, data_manager.py, 82, INFO, Saving data for MRNA by year\n", + "2024-10-23 21:19:31,851, data_manager.py, 82, INFO, Saving data for MRNA by year\n", + "2024-10-23 21:19:32,147, data_manager.py, 73, INFO, Processing ticker MHK\n", + "2024-10-23 21:19:32,147, data_manager.py, 73, INFO, Processing ticker MHK\n", + "2024-10-23 21:19:32,148, data_manager.py, 108, INFO, Getting stock price data for MHK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:32,148, data_manager.py, 108, INFO, Getting stock price data for MHK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:32,316, data_manager.py, 82, INFO, Saving data for MHK by year\n", + "2024-10-23 21:19:32,316, data_manager.py, 82, INFO, Saving data for MHK by year\n", + "2024-10-23 21:19:33,374, data_manager.py, 73, INFO, Processing ticker MOH\n", + "2024-10-23 21:19:33,374, data_manager.py, 73, INFO, Processing ticker MOH\n", + "2024-10-23 21:19:33,376, data_manager.py, 108, INFO, Getting stock price data for MOH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:33,376, data_manager.py, 108, INFO, Getting stock price data for MOH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:33,660, data_manager.py, 82, INFO, Saving data for MOH by year\n", + "2024-10-23 21:19:33,660, data_manager.py, 82, INFO, Saving data for MOH by year\n", + "2024-10-23 21:19:34,454, data_manager.py, 73, INFO, Processing ticker TAP\n", + "2024-10-23 21:19:34,454, data_manager.py, 73, INFO, Processing ticker TAP\n", + "2024-10-23 21:19:34,455, data_manager.py, 108, INFO, Getting stock price data for TAP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:34,455, data_manager.py, 108, INFO, Getting stock price data for TAP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:34,691, data_manager.py, 82, INFO, Saving data for TAP by year\n", + "2024-10-23 21:19:34,691, data_manager.py, 82, INFO, Saving data for TAP by year\n", + "2024-10-23 21:19:35,503, data_manager.py, 73, INFO, Processing ticker MDLZ\n", + "2024-10-23 21:19:35,503, data_manager.py, 73, INFO, Processing ticker MDLZ\n", + "2024-10-23 21:19:35,504, data_manager.py, 108, INFO, Getting stock price data for MDLZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:35,504, data_manager.py, 108, INFO, Getting stock price data for MDLZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:35,687, data_manager.py, 82, INFO, Saving data for MDLZ by year\n", + "2024-10-23 21:19:35,687, data_manager.py, 82, INFO, Saving data for MDLZ by year\n", + "2024-10-23 21:19:36,602, data_manager.py, 73, INFO, Processing ticker MPWR\n", + "2024-10-23 21:19:36,602, data_manager.py, 73, INFO, Processing ticker MPWR\n", + "2024-10-23 21:19:36,603, data_manager.py, 108, INFO, Getting stock price data for MPWR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:36,603, data_manager.py, 108, INFO, Getting stock price data for MPWR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:36,790, data_manager.py, 82, INFO, Saving data for MPWR by year\n", + "2024-10-23 21:19:36,790, data_manager.py, 82, INFO, Saving data for MPWR by year\n", + "2024-10-23 21:19:37,580, data_manager.py, 73, INFO, Processing ticker MNST\n", + "2024-10-23 21:19:37,580, data_manager.py, 73, INFO, Processing ticker MNST\n", + "2024-10-23 21:19:37,582, data_manager.py, 108, INFO, Getting stock price data for MNST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:37,582, data_manager.py, 108, INFO, Getting stock price data for MNST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:37,775, data_manager.py, 82, INFO, Saving data for MNST by year\n", + "2024-10-23 21:19:37,775, data_manager.py, 82, INFO, Saving data for MNST by year\n", + "2024-10-23 21:19:39,142, data_manager.py, 73, INFO, Processing ticker MCO\n", + "2024-10-23 21:19:39,142, data_manager.py, 73, INFO, Processing ticker MCO\n", + "2024-10-23 21:19:39,144, data_manager.py, 108, INFO, Getting stock price data for MCO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:39,144, data_manager.py, 108, INFO, Getting stock price data for MCO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:39,487, data_manager.py, 82, INFO, Saving data for MCO by year\n", + "2024-10-23 21:19:39,487, data_manager.py, 82, INFO, Saving data for MCO by year\n", + "2024-10-23 21:19:40,308, data_manager.py, 73, INFO, Processing ticker MS\n", + "2024-10-23 21:19:40,308, data_manager.py, 73, INFO, Processing ticker MS\n", + "2024-10-23 21:19:40,310, data_manager.py, 108, INFO, Getting stock price data for MS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:40,310, data_manager.py, 108, INFO, Getting stock price data for MS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:40,549, data_manager.py, 82, INFO, Saving data for MS by year\n", + "2024-10-23 21:19:40,549, data_manager.py, 82, INFO, Saving data for MS by year\n", + "2024-10-23 21:19:41,626, data_manager.py, 73, INFO, Processing ticker MOS\n", + "2024-10-23 21:19:41,626, data_manager.py, 73, INFO, Processing ticker MOS\n", + "2024-10-23 21:19:41,629, data_manager.py, 108, INFO, Getting stock price data for MOS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:41,629, data_manager.py, 108, INFO, Getting stock price data for MOS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:41,969, data_manager.py, 82, INFO, Saving data for MOS by year\n", + "2024-10-23 21:19:41,969, data_manager.py, 82, INFO, Saving data for MOS by year\n", + "2024-10-23 21:19:43,212, data_manager.py, 73, INFO, Processing ticker MSI\n", + "2024-10-23 21:19:43,212, data_manager.py, 73, INFO, Processing ticker MSI\n", + "2024-10-23 21:19:43,213, data_manager.py, 108, INFO, Getting stock price data for MSI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:43,213, data_manager.py, 108, INFO, Getting stock price data for MSI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:43,531, data_manager.py, 82, INFO, Saving data for MSI by year\n", + "2024-10-23 21:19:43,531, data_manager.py, 82, INFO, Saving data for MSI by year\n", + "2024-10-23 21:19:44,578, data_manager.py, 73, INFO, Processing ticker MSCI\n", + "2024-10-23 21:19:44,578, data_manager.py, 73, INFO, Processing ticker MSCI\n", + "2024-10-23 21:19:44,579, data_manager.py, 108, INFO, Getting stock price data for MSCI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:44,579, data_manager.py, 108, INFO, Getting stock price data for MSCI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:44,752, data_manager.py, 82, INFO, Saving data for MSCI by year\n", + "2024-10-23 21:19:44,752, data_manager.py, 82, INFO, Saving data for MSCI by year\n", + "2024-10-23 21:19:45,405, data_manager.py, 73, INFO, Processing ticker NDAQ\n", + "2024-10-23 21:19:45,405, data_manager.py, 73, INFO, Processing ticker NDAQ\n", + "2024-10-23 21:19:45,407, data_manager.py, 108, INFO, Getting stock price data for NDAQ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:45,407, data_manager.py, 108, INFO, Getting stock price data for NDAQ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:45,617, data_manager.py, 82, INFO, Saving data for NDAQ by year\n", + "2024-10-23 21:19:45,617, data_manager.py, 82, INFO, Saving data for NDAQ by year\n", + "2024-10-23 21:19:46,687, data_manager.py, 73, INFO, Processing ticker NTAP\n", + "2024-10-23 21:19:46,687, data_manager.py, 73, INFO, Processing ticker NTAP\n", + "2024-10-23 21:19:46,688, data_manager.py, 108, INFO, Getting stock price data for NTAP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:46,688, data_manager.py, 108, INFO, Getting stock price data for NTAP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:46,913, data_manager.py, 82, INFO, Saving data for NTAP by year\n", + "2024-10-23 21:19:46,913, data_manager.py, 82, INFO, Saving data for NTAP by year\n", + "2024-10-23 21:19:48,277, data_manager.py, 73, INFO, Processing ticker NFLX\n", + "2024-10-23 21:19:48,277, data_manager.py, 73, INFO, Processing ticker NFLX\n", + "2024-10-23 21:19:48,278, data_manager.py, 108, INFO, Getting stock price data for NFLX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:48,278, data_manager.py, 108, INFO, Getting stock price data for NFLX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:48,768, data_manager.py, 82, INFO, Saving data for NFLX by year\n", + "2024-10-23 21:19:48,768, data_manager.py, 82, INFO, Saving data for NFLX by year\n", + "2024-10-23 21:19:49,919, data_manager.py, 73, INFO, Processing ticker NEM\n", + "2024-10-23 21:19:49,919, data_manager.py, 73, INFO, Processing ticker NEM\n", + "2024-10-23 21:19:49,920, data_manager.py, 108, INFO, Getting stock price data for NEM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:49,920, data_manager.py, 108, INFO, Getting stock price data for NEM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:11,237, data_manager.py, 82, INFO, Saving data for NEM by year\n", + "2024-10-23 21:20:11,237, data_manager.py, 82, INFO, Saving data for NEM by year\n", + "2024-10-23 21:19:51,126, data_manager.py, 73, INFO, Processing ticker NWSA\n", + "2024-10-23 21:19:51,126, data_manager.py, 73, INFO, Processing ticker NWSA\n", + "2024-10-23 21:19:51,128, data_manager.py, 108, INFO, Getting stock price data for NWSA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:51,128, data_manager.py, 108, INFO, Getting stock price data for NWSA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:51,387, data_manager.py, 82, INFO, Saving data for NWSA by year\n", + "2024-10-23 21:19:51,387, data_manager.py, 82, INFO, Saving data for NWSA by year\n", + "2024-10-23 21:19:51,855, data_manager.py, 73, INFO, Processing ticker NWS\n", + "2024-10-23 21:19:51,855, data_manager.py, 73, INFO, Processing ticker NWS\n", + "2024-10-23 21:19:51,856, data_manager.py, 108, INFO, Getting stock price data for NWS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:51,856, data_manager.py, 108, INFO, Getting stock price data for NWS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:52,056, data_manager.py, 82, INFO, Saving data for NWS by year\n", + "2024-10-23 21:19:52,056, data_manager.py, 82, INFO, Saving data for NWS by year\n", + "2024-10-23 21:19:52,541, data_manager.py, 73, INFO, Processing ticker NEE\n", + "2024-10-23 21:19:52,541, data_manager.py, 73, INFO, Processing ticker NEE\n", + "2024-10-23 21:19:52,543, data_manager.py, 108, INFO, Getting stock price data for NEE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:52,543, data_manager.py, 108, INFO, Getting stock price data for NEE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:52,822, data_manager.py, 82, INFO, Saving data for NEE by year\n", + "2024-10-23 21:19:52,822, data_manager.py, 82, INFO, Saving data for NEE by year\n", + "2024-10-23 21:19:54,071, data_manager.py, 73, INFO, Processing ticker NKE\n", + "2024-10-23 21:19:54,071, data_manager.py, 73, INFO, Processing ticker NKE\n", + "2024-10-23 21:19:54,073, data_manager.py, 108, INFO, Getting stock price data for NKE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:54,073, data_manager.py, 108, INFO, Getting stock price data for NKE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:54,346, data_manager.py, 82, INFO, Saving data for NKE by year\n", + "2024-10-23 21:19:54,346, data_manager.py, 82, INFO, Saving data for NKE by year\n", + "2024-10-23 21:19:55,297, data_manager.py, 73, INFO, Processing ticker NI\n", + "2024-10-23 21:19:55,297, data_manager.py, 73, INFO, Processing ticker NI\n", + "2024-10-23 21:19:55,299, data_manager.py, 108, INFO, Getting stock price data for NI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:55,299, data_manager.py, 108, INFO, Getting stock price data for NI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:55,630, data_manager.py, 82, INFO, Saving data for NI by year\n", + "2024-10-23 21:19:55,630, data_manager.py, 82, INFO, Saving data for NI by year\n", + "2024-10-23 21:19:56,503, data_manager.py, 73, INFO, Processing ticker NDSN\n", + "2024-10-23 21:19:56,503, data_manager.py, 73, INFO, Processing ticker NDSN\n", + "2024-10-23 21:19:56,505, data_manager.py, 108, INFO, Getting stock price data for NDSN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:56,505, data_manager.py, 108, INFO, Getting stock price data for NDSN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:56,785, data_manager.py, 82, INFO, Saving data for NDSN by year\n", + "2024-10-23 21:19:56,785, data_manager.py, 82, INFO, Saving data for NDSN by year\n", + "2024-10-23 21:19:57,623, data_manager.py, 73, INFO, Processing ticker NSC\n", + "2024-10-23 21:19:57,623, data_manager.py, 73, INFO, Processing ticker NSC\n", + "2024-10-23 21:19:57,625, data_manager.py, 108, INFO, Getting stock price data for NSC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:57,625, data_manager.py, 108, INFO, Getting stock price data for NSC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:57,908, data_manager.py, 82, INFO, Saving data for NSC by year\n", + "2024-10-23 21:19:57,908, data_manager.py, 82, INFO, Saving data for NSC by year\n", + "2024-10-23 21:19:58,905, data_manager.py, 73, INFO, Processing ticker NTRS\n", + "2024-10-23 21:19:58,905, data_manager.py, 73, INFO, Processing ticker NTRS\n", + "2024-10-23 21:19:58,906, data_manager.py, 108, INFO, Getting stock price data for NTRS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:19:58,906, data_manager.py, 108, INFO, Getting stock price data for NTRS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:19:59,289, data_manager.py, 82, INFO, Saving data for NTRS by year\n", + "2024-10-23 21:19:59,289, data_manager.py, 82, INFO, Saving data for NTRS by year\n", + "2024-10-23 21:20:00,255, data_manager.py, 73, INFO, Processing ticker NOC\n", + "2024-10-23 21:20:00,255, data_manager.py, 73, INFO, Processing ticker NOC\n", + "2024-10-23 21:20:00,256, data_manager.py, 108, INFO, Getting stock price data for NOC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:00,256, data_manager.py, 108, INFO, Getting stock price data for NOC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:00,560, data_manager.py, 82, INFO, Saving data for NOC by year\n", + "2024-10-23 21:20:00,560, data_manager.py, 82, INFO, Saving data for NOC by year\n", + "2024-10-23 21:20:01,533, data_manager.py, 73, INFO, Processing ticker NCLH\n", + "2024-10-23 21:20:01,533, data_manager.py, 73, INFO, Processing ticker NCLH\n", + "2024-10-23 21:20:01,535, data_manager.py, 108, INFO, Getting stock price data for NCLH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:01,535, data_manager.py, 108, INFO, Getting stock price data for NCLH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:01,664, data_manager.py, 82, INFO, Saving data for NCLH by year\n", + "2024-10-23 21:20:01,664, data_manager.py, 82, INFO, Saving data for NCLH by year\n", + "2024-10-23 21:20:02,100, data_manager.py, 73, INFO, Processing ticker NRG\n", + "2024-10-23 21:20:02,100, data_manager.py, 73, INFO, Processing ticker NRG\n", + "2024-10-23 21:20:02,102, data_manager.py, 108, INFO, Getting stock price data for NRG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:02,102, data_manager.py, 108, INFO, Getting stock price data for NRG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:02,327, data_manager.py, 82, INFO, Saving data for NRG by year\n", + "2024-10-23 21:20:02,327, data_manager.py, 82, INFO, Saving data for NRG by year\n", + "2024-10-23 21:20:03,184, data_manager.py, 73, INFO, Processing ticker NUE\n", + "2024-10-23 21:20:03,184, data_manager.py, 73, INFO, Processing ticker NUE\n", + "2024-10-23 21:20:03,186, data_manager.py, 108, INFO, Getting stock price data for NUE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:03,186, data_manager.py, 108, INFO, Getting stock price data for NUE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:03,455, data_manager.py, 82, INFO, Saving data for NUE by year\n", + "2024-10-23 21:20:03,455, data_manager.py, 82, INFO, Saving data for NUE by year\n", + "2024-10-23 21:20:04,372, data_manager.py, 73, INFO, Processing ticker NVDA\n", + "2024-10-23 21:20:04,372, data_manager.py, 73, INFO, Processing ticker NVDA\n", + "2024-10-23 21:20:04,374, data_manager.py, 108, INFO, Getting stock price data for NVDA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:04,374, data_manager.py, 108, INFO, Getting stock price data for NVDA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:04,593, data_manager.py, 82, INFO, Saving data for NVDA by year\n", + "2024-10-23 21:20:04,593, data_manager.py, 82, INFO, Saving data for NVDA by year\n", + "2024-10-23 21:20:05,478, data_manager.py, 73, INFO, Processing ticker NVR\n", + "2024-10-23 21:20:05,478, data_manager.py, 73, INFO, Processing ticker NVR\n", + "2024-10-23 21:20:05,480, data_manager.py, 108, INFO, Getting stock price data for NVR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:05,480, data_manager.py, 108, INFO, Getting stock price data for NVR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:05,637, data_manager.py, 82, INFO, Saving data for NVR by year\n", + "2024-10-23 21:20:05,637, data_manager.py, 82, INFO, Saving data for NVR by year\n", + "2024-10-23 21:20:06,545, data_manager.py, 73, INFO, Processing ticker NXPI\n", + "2024-10-23 21:20:06,545, data_manager.py, 73, INFO, Processing ticker NXPI\n", + "2024-10-23 21:20:06,546, data_manager.py, 108, INFO, Getting stock price data for NXPI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:06,546, data_manager.py, 108, INFO, Getting stock price data for NXPI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:06,700, data_manager.py, 82, INFO, Saving data for NXPI by year\n", + "2024-10-23 21:20:06,700, data_manager.py, 82, INFO, Saving data for NXPI by year\n", + "2024-10-23 21:20:07,393, data_manager.py, 73, INFO, Processing ticker ORLY\n", + "2024-10-23 21:20:07,393, data_manager.py, 73, INFO, Processing ticker ORLY\n", + "2024-10-23 21:20:07,396, data_manager.py, 108, INFO, Getting stock price data for ORLY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:07,396, data_manager.py, 108, INFO, Getting stock price data for ORLY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:07,553, data_manager.py, 82, INFO, Saving data for ORLY by year\n", + "2024-10-23 21:20:07,553, data_manager.py, 82, INFO, Saving data for ORLY by year\n", + "2024-10-23 21:20:08,626, data_manager.py, 73, INFO, Processing ticker OXY\n", + "2024-10-23 21:20:08,626, data_manager.py, 73, INFO, Processing ticker OXY\n", + "2024-10-23 21:20:08,628, data_manager.py, 108, INFO, Getting stock price data for OXY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:08,628, data_manager.py, 108, INFO, Getting stock price data for OXY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:08,885, data_manager.py, 82, INFO, Saving data for OXY by year\n", + "2024-10-23 21:20:08,885, data_manager.py, 82, INFO, Saving data for OXY by year\n", + "2024-10-23 21:20:09,849, data_manager.py, 73, INFO, Processing ticker ODFL\n", + "2024-10-23 21:20:09,849, data_manager.py, 73, INFO, Processing ticker ODFL\n", + "2024-10-23 21:20:09,850, data_manager.py, 108, INFO, Getting stock price data for ODFL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:09,850, data_manager.py, 108, INFO, Getting stock price data for ODFL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:10,047, data_manager.py, 82, INFO, Saving data for ODFL by year\n", + "2024-10-23 21:20:10,047, data_manager.py, 82, INFO, Saving data for ODFL by year\n", + "2024-10-23 21:20:11,201, data_manager.py, 73, INFO, Processing ticker OMC\n", + "2024-10-23 21:20:11,201, data_manager.py, 73, INFO, Processing ticker OMC\n", + "2024-10-23 21:20:11,202, data_manager.py, 108, INFO, Getting stock price data for OMC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:11,202, data_manager.py, 108, INFO, Getting stock price data for OMC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:11,455, data_manager.py, 82, INFO, Saving data for OMC by year\n", + "2024-10-23 21:20:11,455, data_manager.py, 82, INFO, Saving data for OMC by year\n", + "2024-10-23 21:20:12,541, data_manager.py, 73, INFO, Processing ticker ON\n", + "2024-10-23 21:20:12,541, data_manager.py, 73, INFO, Processing ticker ON\n", + "2024-10-23 21:20:12,542, data_manager.py, 108, INFO, Getting stock price data for ON from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:12,542, data_manager.py, 108, INFO, Getting stock price data for ON from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:12,706, data_manager.py, 82, INFO, Saving data for ON by year\n", + "2024-10-23 21:20:12,706, data_manager.py, 82, INFO, Saving data for ON by year\n", + "2024-10-23 21:20:13,622, data_manager.py, 73, INFO, Processing ticker OKE\n", + "2024-10-23 21:20:13,622, data_manager.py, 73, INFO, Processing ticker OKE\n", + "2024-10-23 21:20:13,624, data_manager.py, 108, INFO, Getting stock price data for OKE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:13,624, data_manager.py, 108, INFO, Getting stock price data for OKE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:13,888, data_manager.py, 82, INFO, Saving data for OKE by year\n", + "2024-10-23 21:20:13,888, data_manager.py, 82, INFO, Saving data for OKE by year\n", + "2024-10-23 21:20:14,803, data_manager.py, 73, INFO, Processing ticker ORCL\n", + "2024-10-23 21:20:14,803, data_manager.py, 73, INFO, Processing ticker ORCL\n", + "2024-10-23 21:20:14,804, data_manager.py, 108, INFO, Getting stock price data for ORCL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:14,804, data_manager.py, 108, INFO, Getting stock price data for ORCL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:15,037, data_manager.py, 82, INFO, Saving data for ORCL by year\n", + "2024-10-23 21:20:15,037, data_manager.py, 82, INFO, Saving data for ORCL by year\n", + "2024-10-23 21:20:15,919, data_manager.py, 73, INFO, Processing ticker OTIS\n", + "2024-10-23 21:20:15,919, data_manager.py, 73, INFO, Processing ticker OTIS\n", + "2024-10-23 21:20:15,921, data_manager.py, 108, INFO, Getting stock price data for OTIS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:15,921, data_manager.py, 108, INFO, Getting stock price data for OTIS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:16,031, data_manager.py, 82, INFO, Saving data for OTIS by year\n", + "2024-10-23 21:20:16,031, data_manager.py, 82, INFO, Saving data for OTIS by year\n", + "2024-10-23 21:20:16,245, data_manager.py, 73, INFO, Processing ticker PCAR\n", + "2024-10-23 21:20:16,245, data_manager.py, 73, INFO, Processing ticker PCAR\n", + "2024-10-23 21:20:16,247, data_manager.py, 108, INFO, Getting stock price data for PCAR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:16,247, data_manager.py, 108, INFO, Getting stock price data for PCAR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:16,485, data_manager.py, 82, INFO, Saving data for PCAR by year\n", + "2024-10-23 21:20:16,485, data_manager.py, 82, INFO, Saving data for PCAR by year\n", + "2024-10-23 21:20:17,606, data_manager.py, 73, INFO, Processing ticker PKG\n", + "2024-10-23 21:20:17,606, data_manager.py, 73, INFO, Processing ticker PKG\n", + "2024-10-23 21:20:17,608, data_manager.py, 108, INFO, Getting stock price data for PKG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:17,608, data_manager.py, 108, INFO, Getting stock price data for PKG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:17,831, data_manager.py, 82, INFO, Saving data for PKG by year\n", + "2024-10-23 21:20:17,831, data_manager.py, 82, INFO, Saving data for PKG by year\n", + "2024-10-23 21:20:18,848, data_manager.py, 73, INFO, Processing ticker PANW\n", + "2024-10-23 21:20:18,848, data_manager.py, 73, INFO, Processing ticker PANW\n", + "2024-10-23 21:20:18,849, data_manager.py, 108, INFO, Getting stock price data for PANW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:18,849, data_manager.py, 108, INFO, Getting stock price data for PANW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:18,993, data_manager.py, 82, INFO, Saving data for PANW by year\n", + "2024-10-23 21:20:18,993, data_manager.py, 82, INFO, Saving data for PANW by year\n", + "2024-10-23 21:20:19,500, data_manager.py, 73, INFO, Processing ticker PARA\n", + "2024-10-23 21:20:19,500, data_manager.py, 73, INFO, Processing ticker PARA\n", + "2024-10-23 21:20:19,502, data_manager.py, 108, INFO, Getting stock price data for PARA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:19,502, data_manager.py, 108, INFO, Getting stock price data for PARA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:19,767, data_manager.py, 82, INFO, Saving data for PARA by year\n", + "2024-10-23 21:20:19,767, data_manager.py, 82, INFO, Saving data for PARA by year\n", + "2024-10-23 21:20:20,605, data_manager.py, 73, INFO, Processing ticker PH\n", + "2024-10-23 21:20:20,605, data_manager.py, 73, INFO, Processing ticker PH\n", + "2024-10-23 21:20:20,607, data_manager.py, 108, INFO, Getting stock price data for PH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:20,607, data_manager.py, 108, INFO, Getting stock price data for PH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:20,857, data_manager.py, 82, INFO, Saving data for PH by year\n", + "2024-10-23 21:20:20,857, data_manager.py, 82, INFO, Saving data for PH by year\n", + "2024-10-23 21:20:21,950, data_manager.py, 73, INFO, Processing ticker PAYX\n", + "2024-10-23 21:20:21,950, data_manager.py, 73, INFO, Processing ticker PAYX\n", + "2024-10-23 21:20:21,952, data_manager.py, 108, INFO, Getting stock price data for PAYX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:21,952, data_manager.py, 108, INFO, Getting stock price data for PAYX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:22,190, data_manager.py, 82, INFO, Saving data for PAYX by year\n", + "2024-10-23 21:20:22,190, data_manager.py, 82, INFO, Saving data for PAYX by year\n", + "2024-10-23 21:20:23,232, data_manager.py, 73, INFO, Processing ticker PAYC\n", + "2024-10-23 21:20:23,232, data_manager.py, 73, INFO, Processing ticker PAYC\n", + "2024-10-23 21:20:23,233, data_manager.py, 108, INFO, Getting stock price data for PAYC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:23,233, data_manager.py, 108, INFO, Getting stock price data for PAYC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:23,354, data_manager.py, 82, INFO, Saving data for PAYC by year\n", + "2024-10-23 21:20:23,354, data_manager.py, 82, INFO, Saving data for PAYC by year\n", + "2024-10-23 21:20:23,862, data_manager.py, 73, INFO, Processing ticker PYPL\n", + "2024-10-23 21:20:23,862, data_manager.py, 73, INFO, Processing ticker PYPL\n", + "2024-10-23 21:20:23,864, data_manager.py, 108, INFO, Getting stock price data for PYPL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:23,864, data_manager.py, 108, INFO, Getting stock price data for PYPL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:23,994, data_manager.py, 82, INFO, Saving data for PYPL by year\n", + "2024-10-23 21:20:23,994, data_manager.py, 82, INFO, Saving data for PYPL by year\n", + "2024-10-23 21:20:24,443, data_manager.py, 73, INFO, Processing ticker PNR\n", + "2024-10-23 21:20:24,443, data_manager.py, 73, INFO, Processing ticker PNR\n", + "2024-10-23 21:20:24,445, data_manager.py, 108, INFO, Getting stock price data for PNR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:24,445, data_manager.py, 108, INFO, Getting stock price data for PNR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:24,745, data_manager.py, 82, INFO, Saving data for PNR by year\n", + "2024-10-23 21:20:24,745, data_manager.py, 82, INFO, Saving data for PNR by year\n", + "2024-10-23 21:20:25,899, data_manager.py, 73, INFO, Processing ticker PEP\n", + "2024-10-23 21:20:25,899, data_manager.py, 73, INFO, Processing ticker PEP\n", + "2024-10-23 21:20:25,900, data_manager.py, 108, INFO, Getting stock price data for PEP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:25,900, data_manager.py, 108, INFO, Getting stock price data for PEP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:26,155, data_manager.py, 82, INFO, Saving data for PEP by year\n", + "2024-10-23 21:20:26,155, data_manager.py, 82, INFO, Saving data for PEP by year\n", + "2024-10-23 21:20:27,221, data_manager.py, 73, INFO, Processing ticker PFE\n", + "2024-10-23 21:20:27,221, data_manager.py, 73, INFO, Processing ticker PFE\n", + "2024-10-23 21:20:27,223, data_manager.py, 108, INFO, Getting stock price data for PFE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:27,223, data_manager.py, 108, INFO, Getting stock price data for PFE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:27,495, data_manager.py, 82, INFO, Saving data for PFE by year\n", + "2024-10-23 21:20:27,495, data_manager.py, 82, INFO, Saving data for PFE by year\n", + "2024-10-23 21:20:28,397, data_manager.py, 73, INFO, Processing ticker PCG\n", + "2024-10-23 21:20:28,397, data_manager.py, 73, INFO, Processing ticker PCG\n", + "2024-10-23 21:20:28,398, data_manager.py, 108, INFO, Getting stock price data for PCG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:28,398, data_manager.py, 108, INFO, Getting stock price data for PCG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:28,657, data_manager.py, 82, INFO, Saving data for PCG by year\n", + "2024-10-23 21:20:28,657, data_manager.py, 82, INFO, Saving data for PCG by year\n", + "2024-10-23 21:20:29,522, data_manager.py, 73, INFO, Processing ticker PM\n", + "2024-10-23 21:20:29,522, data_manager.py, 73, INFO, Processing ticker PM\n", + "2024-10-23 21:20:29,523, data_manager.py, 108, INFO, Getting stock price data for PM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:29,523, data_manager.py, 108, INFO, Getting stock price data for PM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:29,701, data_manager.py, 82, INFO, Saving data for PM by year\n", + "2024-10-23 21:20:29,701, data_manager.py, 82, INFO, Saving data for PM by year\n", + "2024-10-23 21:20:30,448, data_manager.py, 73, INFO, Processing ticker PSX\n", + "2024-10-23 21:20:30,448, data_manager.py, 73, INFO, Processing ticker PSX\n", + "2024-10-23 21:20:30,449, data_manager.py, 108, INFO, Getting stock price data for PSX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:30,449, data_manager.py, 108, INFO, Getting stock price data for PSX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:30,617, data_manager.py, 82, INFO, Saving data for PSX by year\n", + "2024-10-23 21:20:30,617, data_manager.py, 82, INFO, Saving data for PSX by year\n", + "2024-10-23 21:20:31,139, data_manager.py, 73, INFO, Processing ticker PNW\n", + "2024-10-23 21:20:31,139, data_manager.py, 73, INFO, Processing ticker PNW\n", + "2024-10-23 21:20:31,141, data_manager.py, 108, INFO, Getting stock price data for PNW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:31,141, data_manager.py, 108, INFO, Getting stock price data for PNW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:31,376, data_manager.py, 82, INFO, Saving data for PNW by year\n", + "2024-10-23 21:20:31,376, data_manager.py, 82, INFO, Saving data for PNW by year\n", + "2024-10-23 21:20:32,524, data_manager.py, 73, INFO, Processing ticker PXD\n", + "2024-10-23 21:20:32,524, data_manager.py, 73, INFO, Processing ticker PXD\n", + "2024-10-23 21:20:32,526, data_manager.py, 108, INFO, Getting stock price data for PXD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:32,526, data_manager.py, 108, INFO, Getting stock price data for PXD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['PXD']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n", + "2024-10-23 21:20:33,914, data_manager.py, 82, INFO, Saving data for PXD by year\n", + "2024-10-23 21:20:33,914, data_manager.py, 82, INFO, Saving data for PXD by year\n", + "2024-10-23 21:20:33,916, data_manager.py, 100, WARNING, No data found for PXD\n", + "2024-10-23 21:20:33,916, data_manager.py, 100, WARNING, No data found for PXD\n", + "2024-10-23 21:20:33,918, data_manager.py, 73, INFO, Processing ticker PNC\n", + "2024-10-23 21:20:33,918, data_manager.py, 73, INFO, Processing ticker PNC\n", + "2024-10-23 21:20:33,920, data_manager.py, 108, INFO, Getting stock price data for PNC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:33,920, data_manager.py, 108, INFO, Getting stock price data for PNC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:34,196, data_manager.py, 82, INFO, Saving data for PNC by year\n", + "2024-10-23 21:20:34,196, data_manager.py, 82, INFO, Saving data for PNC by year\n", + "2024-10-23 21:20:35,114, data_manager.py, 73, INFO, Processing ticker POOL\n", + "2024-10-23 21:20:35,114, data_manager.py, 73, INFO, Processing ticker POOL\n", + "2024-10-23 21:20:35,115, data_manager.py, 108, INFO, Getting stock price data for POOL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:35,115, data_manager.py, 108, INFO, Getting stock price data for POOL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:35,313, data_manager.py, 82, INFO, Saving data for POOL by year\n", + "2024-10-23 21:20:35,313, data_manager.py, 82, INFO, Saving data for POOL by year\n", + "2024-10-23 21:20:36,391, data_manager.py, 73, INFO, Processing ticker PPG\n", + "2024-10-23 21:20:36,391, data_manager.py, 73, INFO, Processing ticker PPG\n", + "2024-10-23 21:20:36,392, data_manager.py, 108, INFO, Getting stock price data for PPG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:36,392, data_manager.py, 108, INFO, Getting stock price data for PPG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:36,652, data_manager.py, 82, INFO, Saving data for PPG by year\n", + "2024-10-23 21:20:36,652, data_manager.py, 82, INFO, Saving data for PPG by year\n", + "2024-10-23 21:20:38,143, data_manager.py, 73, INFO, Processing ticker PPL\n", + "2024-10-23 21:20:38,143, data_manager.py, 73, INFO, Processing ticker PPL\n", + "2024-10-23 21:20:38,144, data_manager.py, 108, INFO, Getting stock price data for PPL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:38,144, data_manager.py, 108, INFO, Getting stock price data for PPL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:38,466, data_manager.py, 82, INFO, Saving data for PPL by year\n", + "2024-10-23 21:20:38,466, data_manager.py, 82, INFO, Saving data for PPL by year\n", + "2024-10-23 21:20:39,623, data_manager.py, 73, INFO, Processing ticker PFG\n", + "2024-10-23 21:20:39,623, data_manager.py, 73, INFO, Processing ticker PFG\n", + "2024-10-23 21:20:39,624, data_manager.py, 108, INFO, Getting stock price data for PFG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:39,624, data_manager.py, 108, INFO, Getting stock price data for PFG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:39,885, data_manager.py, 82, INFO, Saving data for PFG by year\n", + "2024-10-23 21:20:39,885, data_manager.py, 82, INFO, Saving data for PFG by year\n", + "2024-10-23 21:20:40,806, data_manager.py, 73, INFO, Processing ticker PG\n", + "2024-10-23 21:20:40,806, data_manager.py, 73, INFO, Processing ticker PG\n", + "2024-10-23 21:20:40,808, data_manager.py, 108, INFO, Getting stock price data for PG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:40,808, data_manager.py, 108, INFO, Getting stock price data for PG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:41,118, data_manager.py, 82, INFO, Saving data for PG by year\n", + "2024-10-23 21:20:41,118, data_manager.py, 82, INFO, Saving data for PG by year\n", + "2024-10-23 21:20:42,491, data_manager.py, 73, INFO, Processing ticker PGR\n", + "2024-10-23 21:20:42,491, data_manager.py, 73, INFO, Processing ticker PGR\n", + "2024-10-23 21:20:42,493, data_manager.py, 108, INFO, Getting stock price data for PGR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:42,493, data_manager.py, 108, INFO, Getting stock price data for PGR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:42,802, data_manager.py, 82, INFO, Saving data for PGR by year\n", + "2024-10-23 21:20:42,802, data_manager.py, 82, INFO, Saving data for PGR by year\n", + "2024-10-23 21:20:44,038, data_manager.py, 73, INFO, Processing ticker PLD\n", + "2024-10-23 21:20:44,038, data_manager.py, 73, INFO, Processing ticker PLD\n", + "2024-10-23 21:20:44,040, data_manager.py, 108, INFO, Getting stock price data for PLD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:44,040, data_manager.py, 108, INFO, Getting stock price data for PLD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:44,248, data_manager.py, 82, INFO, Saving data for PLD by year\n", + "2024-10-23 21:20:44,248, data_manager.py, 82, INFO, Saving data for PLD by year\n", + "2024-10-23 21:20:45,619, data_manager.py, 73, INFO, Processing ticker PRU\n", + "2024-10-23 21:20:45,619, data_manager.py, 73, INFO, Processing ticker PRU\n", + "2024-10-23 21:20:45,621, data_manager.py, 108, INFO, Getting stock price data for PRU from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:45,621, data_manager.py, 108, INFO, Getting stock price data for PRU from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:06,474, data_manager.py, 82, INFO, Saving data for PRU by year\n", + "2024-10-23 21:21:06,474, data_manager.py, 82, INFO, Saving data for PRU by year\n", + "2024-10-23 21:20:46,650, data_manager.py, 73, INFO, Processing ticker PEG\n", + "2024-10-23 21:20:46,650, data_manager.py, 73, INFO, Processing ticker PEG\n", + "2024-10-23 21:20:46,651, data_manager.py, 108, INFO, Getting stock price data for PEG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:46,651, data_manager.py, 108, INFO, Getting stock price data for PEG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:46,906, data_manager.py, 82, INFO, Saving data for PEG by year\n", + "2024-10-23 21:20:46,906, data_manager.py, 82, INFO, Saving data for PEG by year\n", + "2024-10-23 21:20:48,086, data_manager.py, 73, INFO, Processing ticker PTC\n", + "2024-10-23 21:20:48,086, data_manager.py, 73, INFO, Processing ticker PTC\n", + "2024-10-23 21:20:48,088, data_manager.py, 108, INFO, Getting stock price data for PTC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:48,088, data_manager.py, 108, INFO, Getting stock price data for PTC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:48,284, data_manager.py, 82, INFO, Saving data for PTC by year\n", + "2024-10-23 21:20:48,284, data_manager.py, 82, INFO, Saving data for PTC by year\n", + "2024-10-23 21:20:49,695, data_manager.py, 73, INFO, Processing ticker PSA\n", + "2024-10-23 21:20:49,695, data_manager.py, 73, INFO, Processing ticker PSA\n", + "2024-10-23 21:20:49,697, data_manager.py, 108, INFO, Getting stock price data for PSA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:49,697, data_manager.py, 108, INFO, Getting stock price data for PSA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:49,939, data_manager.py, 82, INFO, Saving data for PSA by year\n", + "2024-10-23 21:20:49,939, data_manager.py, 82, INFO, Saving data for PSA by year\n", + "2024-10-23 21:20:51,206, data_manager.py, 73, INFO, Processing ticker PHM\n", + "2024-10-23 21:20:51,206, data_manager.py, 73, INFO, Processing ticker PHM\n", + "2024-10-23 21:20:51,207, data_manager.py, 108, INFO, Getting stock price data for PHM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:51,207, data_manager.py, 108, INFO, Getting stock price data for PHM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:51,472, data_manager.py, 82, INFO, Saving data for PHM by year\n", + "2024-10-23 21:20:51,472, data_manager.py, 82, INFO, Saving data for PHM by year\n", + "2024-10-23 21:20:52,672, data_manager.py, 73, INFO, Processing ticker QRVO\n", + "2024-10-23 21:20:52,672, data_manager.py, 73, INFO, Processing ticker QRVO\n", + "2024-10-23 21:20:52,673, data_manager.py, 108, INFO, Getting stock price data for QRVO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:52,673, data_manager.py, 108, INFO, Getting stock price data for QRVO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:52,791, data_manager.py, 82, INFO, Saving data for QRVO by year\n", + "2024-10-23 21:20:52,791, data_manager.py, 82, INFO, Saving data for QRVO by year\n", + "2024-10-23 21:20:53,252, data_manager.py, 73, INFO, Processing ticker PWR\n", + "2024-10-23 21:20:53,252, data_manager.py, 73, INFO, Processing ticker PWR\n", + "2024-10-23 21:20:53,253, data_manager.py, 108, INFO, Getting stock price data for PWR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:53,253, data_manager.py, 108, INFO, Getting stock price data for PWR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:53,450, data_manager.py, 82, INFO, Saving data for PWR by year\n", + "2024-10-23 21:20:53,450, data_manager.py, 82, INFO, Saving data for PWR by year\n", + "2024-10-23 21:20:54,638, data_manager.py, 73, INFO, Processing ticker QCOM\n", + "2024-10-23 21:20:54,638, data_manager.py, 73, INFO, Processing ticker QCOM\n", + "2024-10-23 21:20:54,640, data_manager.py, 108, INFO, Getting stock price data for QCOM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:54,640, data_manager.py, 108, INFO, Getting stock price data for QCOM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:54,980, data_manager.py, 82, INFO, Saving data for QCOM by year\n", + "2024-10-23 21:20:54,980, data_manager.py, 82, INFO, Saving data for QCOM by year\n", + "2024-10-23 21:20:55,998, data_manager.py, 73, INFO, Processing ticker DGX\n", + "2024-10-23 21:20:55,998, data_manager.py, 73, INFO, Processing ticker DGX\n", + "2024-10-23 21:20:56,000, data_manager.py, 108, INFO, Getting stock price data for DGX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:56,000, data_manager.py, 108, INFO, Getting stock price data for DGX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:56,215, data_manager.py, 82, INFO, Saving data for DGX by year\n", + "2024-10-23 21:20:56,215, data_manager.py, 82, INFO, Saving data for DGX by year\n", + "2024-10-23 21:20:57,300, data_manager.py, 73, INFO, Processing ticker RL\n", + "2024-10-23 21:20:57,300, data_manager.py, 73, INFO, Processing ticker RL\n", + "2024-10-23 21:20:57,301, data_manager.py, 108, INFO, Getting stock price data for RL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:57,301, data_manager.py, 108, INFO, Getting stock price data for RL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:57,520, data_manager.py, 82, INFO, Saving data for RL by year\n", + "2024-10-23 21:20:57,520, data_manager.py, 82, INFO, Saving data for RL by year\n", + "2024-10-23 21:20:58,561, data_manager.py, 73, INFO, Processing ticker RJF\n", + "2024-10-23 21:20:58,561, data_manager.py, 73, INFO, Processing ticker RJF\n", + "2024-10-23 21:20:58,562, data_manager.py, 108, INFO, Getting stock price data for RJF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:58,562, data_manager.py, 108, INFO, Getting stock price data for RJF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:20:58,816, data_manager.py, 82, INFO, Saving data for RJF by year\n", + "2024-10-23 21:20:58,816, data_manager.py, 82, INFO, Saving data for RJF by year\n", + "2024-10-23 21:20:59,801, data_manager.py, 73, INFO, Processing ticker RTX\n", + "2024-10-23 21:20:59,801, data_manager.py, 73, INFO, Processing ticker RTX\n", + "2024-10-23 21:20:59,803, data_manager.py, 108, INFO, Getting stock price data for RTX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:20:59,803, data_manager.py, 108, INFO, Getting stock price data for RTX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:00,244, data_manager.py, 82, INFO, Saving data for RTX by year\n", + "2024-10-23 21:21:00,244, data_manager.py, 82, INFO, Saving data for RTX by year\n", + "2024-10-23 21:21:01,239, data_manager.py, 73, INFO, Processing ticker O\n", + "2024-10-23 21:21:01,239, data_manager.py, 73, INFO, Processing ticker O\n", + "2024-10-23 21:21:01,240, data_manager.py, 108, INFO, Getting stock price data for O from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:01,240, data_manager.py, 108, INFO, Getting stock price data for O from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:01,512, data_manager.py, 82, INFO, Saving data for O by year\n", + "2024-10-23 21:21:01,512, data_manager.py, 82, INFO, Saving data for O by year\n", + "2024-10-23 21:21:02,566, data_manager.py, 73, INFO, Processing ticker REG\n", + "2024-10-23 21:21:02,566, data_manager.py, 73, INFO, Processing ticker REG\n", + "2024-10-23 21:21:02,567, data_manager.py, 108, INFO, Getting stock price data for REG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:02,567, data_manager.py, 108, INFO, Getting stock price data for REG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:02,788, data_manager.py, 82, INFO, Saving data for REG by year\n", + "2024-10-23 21:21:02,788, data_manager.py, 82, INFO, Saving data for REG by year\n", + "2024-10-23 21:21:03,804, data_manager.py, 73, INFO, Processing ticker REGN\n", + "2024-10-23 21:21:03,804, data_manager.py, 73, INFO, Processing ticker REGN\n", + "2024-10-23 21:21:03,805, data_manager.py, 108, INFO, Getting stock price data for REGN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:03,805, data_manager.py, 108, INFO, Getting stock price data for REGN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:03,959, data_manager.py, 82, INFO, Saving data for REGN by year\n", + "2024-10-23 21:21:03,959, data_manager.py, 82, INFO, Saving data for REGN by year\n", + "2024-10-23 21:21:04,952, data_manager.py, 73, INFO, Processing ticker RF\n", + "2024-10-23 21:21:04,952, data_manager.py, 73, INFO, Processing ticker RF\n", + "2024-10-23 21:21:04,953, data_manager.py, 108, INFO, Getting stock price data for RF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:04,953, data_manager.py, 108, INFO, Getting stock price data for RF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:05,305, data_manager.py, 82, INFO, Saving data for RF by year\n", + "2024-10-23 21:21:05,305, data_manager.py, 82, INFO, Saving data for RF by year\n", + "2024-10-23 21:21:06,396, data_manager.py, 73, INFO, Processing ticker RSG\n", + "2024-10-23 21:21:06,396, data_manager.py, 73, INFO, Processing ticker RSG\n", + "2024-10-23 21:21:06,398, data_manager.py, 108, INFO, Getting stock price data for RSG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:06,398, data_manager.py, 108, INFO, Getting stock price data for RSG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:06,618, data_manager.py, 82, INFO, Saving data for RSG by year\n", + "2024-10-23 21:21:06,618, data_manager.py, 82, INFO, Saving data for RSG by year\n", + "2024-10-23 21:21:07,490, data_manager.py, 73, INFO, Processing ticker RMD\n", + "2024-10-23 21:21:07,490, data_manager.py, 73, INFO, Processing ticker RMD\n", + "2024-10-23 21:21:07,491, data_manager.py, 108, INFO, Getting stock price data for RMD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:07,491, data_manager.py, 108, INFO, Getting stock price data for RMD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:07,697, data_manager.py, 82, INFO, Saving data for RMD by year\n", + "2024-10-23 21:21:07,697, data_manager.py, 82, INFO, Saving data for RMD by year\n", + "2024-10-23 21:21:08,625, data_manager.py, 73, INFO, Processing ticker RVTY\n", + "2024-10-23 21:21:08,625, data_manager.py, 73, INFO, Processing ticker RVTY\n", + "2024-10-23 21:21:08,626, data_manager.py, 108, INFO, Getting stock price data for RVTY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:08,626, data_manager.py, 108, INFO, Getting stock price data for RVTY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:08,942, data_manager.py, 82, INFO, Saving data for RVTY by year\n", + "2024-10-23 21:21:08,942, data_manager.py, 82, INFO, Saving data for RVTY by year\n", + "2024-10-23 21:21:09,981, data_manager.py, 73, INFO, Processing ticker RHI\n", + "2024-10-23 21:21:09,981, data_manager.py, 73, INFO, Processing ticker RHI\n", + "2024-10-23 21:21:09,983, data_manager.py, 108, INFO, Getting stock price data for RHI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:09,983, data_manager.py, 108, INFO, Getting stock price data for RHI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:10,196, data_manager.py, 82, INFO, Saving data for RHI by year\n", + "2024-10-23 21:21:10,196, data_manager.py, 82, INFO, Saving data for RHI by year\n", + "2024-10-23 21:21:11,239, data_manager.py, 73, INFO, Processing ticker ROK\n", + "2024-10-23 21:21:11,239, data_manager.py, 73, INFO, Processing ticker ROK\n", + "2024-10-23 21:21:11,240, data_manager.py, 108, INFO, Getting stock price data for ROK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:11,240, data_manager.py, 108, INFO, Getting stock price data for ROK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:11,530, data_manager.py, 82, INFO, Saving data for ROK by year\n", + "2024-10-23 21:21:11,530, data_manager.py, 82, INFO, Saving data for ROK by year\n", + "2024-10-23 21:21:12,462, data_manager.py, 73, INFO, Processing ticker ROL\n", + "2024-10-23 21:21:12,462, data_manager.py, 73, INFO, Processing ticker ROL\n", + "2024-10-23 21:21:12,464, data_manager.py, 108, INFO, Getting stock price data for ROL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:12,464, data_manager.py, 108, INFO, Getting stock price data for ROL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:12,706, data_manager.py, 82, INFO, Saving data for ROL by year\n", + "2024-10-23 21:21:12,706, data_manager.py, 82, INFO, Saving data for ROL by year\n", + "2024-10-23 21:21:13,980, data_manager.py, 73, INFO, Processing ticker ROP\n", + "2024-10-23 21:21:13,980, data_manager.py, 73, INFO, Processing ticker ROP\n", + "2024-10-23 21:21:13,981, data_manager.py, 108, INFO, Getting stock price data for ROP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:13,981, data_manager.py, 108, INFO, Getting stock price data for ROP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:14,230, data_manager.py, 82, INFO, Saving data for ROP by year\n", + "2024-10-23 21:21:14,230, data_manager.py, 82, INFO, Saving data for ROP by year\n", + "2024-10-23 21:21:15,546, data_manager.py, 73, INFO, Processing ticker ROST\n", + "2024-10-23 21:21:15,546, data_manager.py, 73, INFO, Processing ticker ROST\n", + "2024-10-23 21:21:15,548, data_manager.py, 108, INFO, Getting stock price data for ROST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:15,548, data_manager.py, 108, INFO, Getting stock price data for ROST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:15,791, data_manager.py, 82, INFO, Saving data for ROST by year\n", + "2024-10-23 21:21:15,791, data_manager.py, 82, INFO, Saving data for ROST by year\n", + "2024-10-23 21:21:16,884, data_manager.py, 73, INFO, Processing ticker RCL\n", + "2024-10-23 21:21:16,884, data_manager.py, 73, INFO, Processing ticker RCL\n", + "2024-10-23 21:21:16,885, data_manager.py, 108, INFO, Getting stock price data for RCL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:16,885, data_manager.py, 108, INFO, Getting stock price data for RCL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:17,094, data_manager.py, 82, INFO, Saving data for RCL by year\n", + "2024-10-23 21:21:17,094, data_manager.py, 82, INFO, Saving data for RCL by year\n", + "2024-10-23 21:21:18,070, data_manager.py, 73, INFO, Processing ticker SPGI\n", + "2024-10-23 21:21:18,070, data_manager.py, 73, INFO, Processing ticker SPGI\n", + "2024-10-23 21:21:18,071, data_manager.py, 108, INFO, Getting stock price data for SPGI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:18,071, data_manager.py, 108, INFO, Getting stock price data for SPGI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:18,384, data_manager.py, 82, INFO, Saving data for SPGI by year\n", + "2024-10-23 21:21:18,384, data_manager.py, 82, INFO, Saving data for SPGI by year\n", + "2024-10-23 21:21:19,553, data_manager.py, 73, INFO, Processing ticker CRM\n", + "2024-10-23 21:21:19,553, data_manager.py, 73, INFO, Processing ticker CRM\n", + "2024-10-23 21:21:19,554, data_manager.py, 108, INFO, Getting stock price data for CRM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:19,554, data_manager.py, 108, INFO, Getting stock price data for CRM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:19,755, data_manager.py, 82, INFO, Saving data for CRM by year\n", + "2024-10-23 21:21:19,755, data_manager.py, 82, INFO, Saving data for CRM by year\n", + "2024-10-23 21:21:20,618, data_manager.py, 73, INFO, Processing ticker SBAC\n", + "2024-10-23 21:21:20,618, data_manager.py, 73, INFO, Processing ticker SBAC\n", + "2024-10-23 21:21:20,620, data_manager.py, 108, INFO, Getting stock price data for SBAC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:20,620, data_manager.py, 108, INFO, Getting stock price data for SBAC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:20,813, data_manager.py, 82, INFO, Saving data for SBAC by year\n", + "2024-10-23 21:21:20,813, data_manager.py, 82, INFO, Saving data for SBAC by year\n", + "2024-10-23 21:21:21,779, data_manager.py, 73, INFO, Processing ticker SLB\n", + "2024-10-23 21:21:21,779, data_manager.py, 73, INFO, Processing ticker SLB\n", + "2024-10-23 21:21:21,781, data_manager.py, 108, INFO, Getting stock price data for SLB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:21,781, data_manager.py, 108, INFO, Getting stock price data for SLB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:22,049, data_manager.py, 82, INFO, Saving data for SLB by year\n", + "2024-10-23 21:21:22,049, data_manager.py, 82, INFO, Saving data for SLB by year\n", + "2024-10-23 21:21:22,960, data_manager.py, 73, INFO, Processing ticker STX\n", + "2024-10-23 21:21:22,960, data_manager.py, 73, INFO, Processing ticker STX\n", + "2024-10-23 21:21:22,962, data_manager.py, 108, INFO, Getting stock price data for STX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:22,962, data_manager.py, 108, INFO, Getting stock price data for STX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:23,150, data_manager.py, 82, INFO, Saving data for STX by year\n", + "2024-10-23 21:21:23,150, data_manager.py, 82, INFO, Saving data for STX by year\n", + "2024-10-23 21:21:24,174, data_manager.py, 73, INFO, Processing ticker SRE\n", + "2024-10-23 21:21:24,174, data_manager.py, 73, INFO, Processing ticker SRE\n", + "2024-10-23 21:21:24,175, data_manager.py, 108, INFO, Getting stock price data for SRE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:24,175, data_manager.py, 108, INFO, Getting stock price data for SRE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:24,439, data_manager.py, 82, INFO, Saving data for SRE by year\n", + "2024-10-23 21:21:24,439, data_manager.py, 82, INFO, Saving data for SRE by year\n", + "2024-10-23 21:21:46,530, data_manager.py, 73, INFO, Processing ticker NOW\n", + "2024-10-23 21:21:46,530, data_manager.py, 73, INFO, Processing ticker NOW\n", + "2024-10-23 21:21:46,531, data_manager.py, 108, INFO, Getting stock price data for NOW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:46,531, data_manager.py, 108, INFO, Getting stock price data for NOW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:25,664, data_manager.py, 82, INFO, Saving data for NOW by year\n", + "2024-10-23 21:21:25,664, data_manager.py, 82, INFO, Saving data for NOW by year\n", + "2024-10-23 21:21:26,302, data_manager.py, 73, INFO, Processing ticker SHW\n", + "2024-10-23 21:21:26,302, data_manager.py, 73, INFO, Processing ticker SHW\n", + "2024-10-23 21:21:26,303, data_manager.py, 108, INFO, Getting stock price data for SHW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:26,303, data_manager.py, 108, INFO, Getting stock price data for SHW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:26,541, data_manager.py, 82, INFO, Saving data for SHW by year\n", + "2024-10-23 21:21:26,541, data_manager.py, 82, INFO, Saving data for SHW by year\n", + "2024-10-23 21:21:27,554, data_manager.py, 73, INFO, Processing ticker SPG\n", + "2024-10-23 21:21:27,554, data_manager.py, 73, INFO, Processing ticker SPG\n", + "2024-10-23 21:21:27,555, data_manager.py, 108, INFO, Getting stock price data for SPG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:27,555, data_manager.py, 108, INFO, Getting stock price data for SPG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:27,819, data_manager.py, 82, INFO, Saving data for SPG by year\n", + "2024-10-23 21:21:27,819, data_manager.py, 82, INFO, Saving data for SPG by year\n", + "2024-10-23 21:21:29,041, data_manager.py, 73, INFO, Processing ticker SWKS\n", + "2024-10-23 21:21:29,041, data_manager.py, 73, INFO, Processing ticker SWKS\n", + "2024-10-23 21:21:29,043, data_manager.py, 108, INFO, Getting stock price data for SWKS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:29,043, data_manager.py, 108, INFO, Getting stock price data for SWKS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:29,272, data_manager.py, 82, INFO, Saving data for SWKS by year\n", + "2024-10-23 21:21:29,272, data_manager.py, 82, INFO, Saving data for SWKS by year\n", + "2024-10-23 21:21:30,118, data_manager.py, 73, INFO, Processing ticker SJM\n", + "2024-10-23 21:21:30,118, data_manager.py, 73, INFO, Processing ticker SJM\n", + "2024-10-23 21:21:30,120, data_manager.py, 108, INFO, Getting stock price data for SJM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:30,120, data_manager.py, 108, INFO, Getting stock price data for SJM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:30,318, data_manager.py, 82, INFO, Saving data for SJM by year\n", + "2024-10-23 21:21:30,318, data_manager.py, 82, INFO, Saving data for SJM by year\n", + "2024-10-23 21:21:31,318, data_manager.py, 73, INFO, Processing ticker SNA\n", + "2024-10-23 21:21:31,318, data_manager.py, 73, INFO, Processing ticker SNA\n", + "2024-10-23 21:21:31,319, data_manager.py, 108, INFO, Getting stock price data for SNA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:31,319, data_manager.py, 108, INFO, Getting stock price data for SNA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:31,548, data_manager.py, 82, INFO, Saving data for SNA by year\n", + "2024-10-23 21:21:31,548, data_manager.py, 82, INFO, Saving data for SNA by year\n", + "2024-10-23 21:21:32,528, data_manager.py, 73, INFO, Processing ticker SO\n", + "2024-10-23 21:21:32,528, data_manager.py, 73, INFO, Processing ticker SO\n", + "2024-10-23 21:21:32,529, data_manager.py, 108, INFO, Getting stock price data for SO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:32,529, data_manager.py, 108, INFO, Getting stock price data for SO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:33,000, data_manager.py, 82, INFO, Saving data for SO by year\n", + "2024-10-23 21:21:33,000, data_manager.py, 82, INFO, Saving data for SO by year\n", + "2024-10-23 21:21:34,053, data_manager.py, 73, INFO, Processing ticker LUV\n", + "2024-10-23 21:21:34,053, data_manager.py, 73, INFO, Processing ticker LUV\n", + "2024-10-23 21:21:34,054, data_manager.py, 108, INFO, Getting stock price data for LUV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:34,054, data_manager.py, 108, INFO, Getting stock price data for LUV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:34,311, data_manager.py, 82, INFO, Saving data for LUV by year\n", + "2024-10-23 21:21:34,311, data_manager.py, 82, INFO, Saving data for LUV by year\n", + "2024-10-23 21:21:35,236, data_manager.py, 73, INFO, Processing ticker SWK\n", + "2024-10-23 21:21:35,236, data_manager.py, 73, INFO, Processing ticker SWK\n", + "2024-10-23 21:21:35,238, data_manager.py, 108, INFO, Getting stock price data for SWK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:35,238, data_manager.py, 108, INFO, Getting stock price data for SWK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:35,474, data_manager.py, 82, INFO, Saving data for SWK by year\n", + "2024-10-23 21:21:35,474, data_manager.py, 82, INFO, Saving data for SWK by year\n", + "2024-10-23 21:21:36,407, data_manager.py, 73, INFO, Processing ticker SBUX\n", + "2024-10-23 21:21:36,407, data_manager.py, 73, INFO, Processing ticker SBUX\n", + "2024-10-23 21:21:36,409, data_manager.py, 108, INFO, Getting stock price data for SBUX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:36,409, data_manager.py, 108, INFO, Getting stock price data for SBUX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:36,620, data_manager.py, 82, INFO, Saving data for SBUX by year\n", + "2024-10-23 21:21:36,620, data_manager.py, 82, INFO, Saving data for SBUX by year\n", + "2024-10-23 21:21:37,687, data_manager.py, 73, INFO, Processing ticker STT\n", + "2024-10-23 21:21:37,687, data_manager.py, 73, INFO, Processing ticker STT\n", + "2024-10-23 21:21:37,689, data_manager.py, 108, INFO, Getting stock price data for STT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:37,689, data_manager.py, 108, INFO, Getting stock price data for STT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:37,920, data_manager.py, 82, INFO, Saving data for STT by year\n", + "2024-10-23 21:21:37,920, data_manager.py, 82, INFO, Saving data for STT by year\n", + "2024-10-23 21:21:39,278, data_manager.py, 73, INFO, Processing ticker STLD\n", + "2024-10-23 21:21:39,278, data_manager.py, 73, INFO, Processing ticker STLD\n", + "2024-10-23 21:21:39,279, data_manager.py, 108, INFO, Getting stock price data for STLD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:39,279, data_manager.py, 108, INFO, Getting stock price data for STLD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:39,489, data_manager.py, 82, INFO, Saving data for STLD by year\n", + "2024-10-23 21:21:39,489, data_manager.py, 82, INFO, Saving data for STLD by year\n", + "2024-10-23 21:21:40,499, data_manager.py, 73, INFO, Processing ticker STE\n", + "2024-10-23 21:21:40,499, data_manager.py, 73, INFO, Processing ticker STE\n", + "2024-10-23 21:21:40,501, data_manager.py, 108, INFO, Getting stock price data for STE from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:40,501, data_manager.py, 108, INFO, Getting stock price data for STE from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:40,698, data_manager.py, 82, INFO, Saving data for STE by year\n", + "2024-10-23 21:21:40,698, data_manager.py, 82, INFO, Saving data for STE by year\n", + "2024-10-23 21:21:41,711, data_manager.py, 73, INFO, Processing ticker SYK\n", + "2024-10-23 21:21:41,711, data_manager.py, 73, INFO, Processing ticker SYK\n", + "2024-10-23 21:21:41,712, data_manager.py, 108, INFO, Getting stock price data for SYK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:41,712, data_manager.py, 108, INFO, Getting stock price data for SYK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:41,928, data_manager.py, 82, INFO, Saving data for SYK by year\n", + "2024-10-23 21:21:41,928, data_manager.py, 82, INFO, Saving data for SYK by year\n", + "2024-10-23 21:21:43,233, data_manager.py, 73, INFO, Processing ticker SYF\n", + "2024-10-23 21:21:43,233, data_manager.py, 73, INFO, Processing ticker SYF\n", + "2024-10-23 21:21:43,234, data_manager.py, 108, INFO, Getting stock price data for SYF from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:43,234, data_manager.py, 108, INFO, Getting stock price data for SYF from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:43,481, data_manager.py, 82, INFO, Saving data for SYF by year\n", + "2024-10-23 21:21:43,481, data_manager.py, 82, INFO, Saving data for SYF by year\n", + "2024-10-23 21:21:43,885, data_manager.py, 73, INFO, Processing ticker SNPS\n", + "2024-10-23 21:21:43,885, data_manager.py, 73, INFO, Processing ticker SNPS\n", + "2024-10-23 21:21:43,887, data_manager.py, 108, INFO, Getting stock price data for SNPS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:43,887, data_manager.py, 108, INFO, Getting stock price data for SNPS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:44,081, data_manager.py, 82, INFO, Saving data for SNPS by year\n", + "2024-10-23 21:21:44,081, data_manager.py, 82, INFO, Saving data for SNPS by year\n", + "2024-10-23 21:21:45,057, data_manager.py, 73, INFO, Processing ticker SYY\n", + "2024-10-23 21:21:45,057, data_manager.py, 73, INFO, Processing ticker SYY\n", + "2024-10-23 21:21:45,059, data_manager.py, 108, INFO, Getting stock price data for SYY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:45,059, data_manager.py, 108, INFO, Getting stock price data for SYY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:45,317, data_manager.py, 82, INFO, Saving data for SYY by year\n", + "2024-10-23 21:21:45,317, data_manager.py, 82, INFO, Saving data for SYY by year\n", + "2024-10-23 21:21:46,418, data_manager.py, 73, INFO, Processing ticker TMUS\n", + "2024-10-23 21:21:46,418, data_manager.py, 73, INFO, Processing ticker TMUS\n", + "2024-10-23 21:21:46,419, data_manager.py, 108, INFO, Getting stock price data for TMUS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:46,419, data_manager.py, 108, INFO, Getting stock price data for TMUS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:46,590, data_manager.py, 82, INFO, Saving data for TMUS by year\n", + "2024-10-23 21:21:46,590, data_manager.py, 82, INFO, Saving data for TMUS by year\n", + "2024-10-23 21:21:47,402, data_manager.py, 73, INFO, Processing ticker TROW\n", + "2024-10-23 21:21:47,402, data_manager.py, 73, INFO, Processing ticker TROW\n", + "2024-10-23 21:21:47,403, data_manager.py, 108, INFO, Getting stock price data for TROW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:47,403, data_manager.py, 108, INFO, Getting stock price data for TROW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:47,682, data_manager.py, 82, INFO, Saving data for TROW by year\n", + "2024-10-23 21:21:47,682, data_manager.py, 82, INFO, Saving data for TROW by year\n", + "2024-10-23 21:21:48,710, data_manager.py, 73, INFO, Processing ticker TTWO\n", + "2024-10-23 21:21:48,710, data_manager.py, 73, INFO, Processing ticker TTWO\n", + "2024-10-23 21:21:48,711, data_manager.py, 108, INFO, Getting stock price data for TTWO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:48,711, data_manager.py, 108, INFO, Getting stock price data for TTWO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:49,020, data_manager.py, 82, INFO, Saving data for TTWO by year\n", + "2024-10-23 21:21:49,020, data_manager.py, 82, INFO, Saving data for TTWO by year\n", + "2024-10-23 21:21:50,074, data_manager.py, 73, INFO, Processing ticker TPR\n", + "2024-10-23 21:21:50,074, data_manager.py, 73, INFO, Processing ticker TPR\n", + "2024-10-23 21:21:50,075, data_manager.py, 108, INFO, Getting stock price data for TPR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:50,075, data_manager.py, 108, INFO, Getting stock price data for TPR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:50,266, data_manager.py, 82, INFO, Saving data for TPR by year\n", + "2024-10-23 21:21:50,266, data_manager.py, 82, INFO, Saving data for TPR by year\n", + "2024-10-23 21:21:51,217, data_manager.py, 73, INFO, Processing ticker TRGP\n", + "2024-10-23 21:21:51,217, data_manager.py, 73, INFO, Processing ticker TRGP\n", + "2024-10-23 21:21:51,218, data_manager.py, 108, INFO, Getting stock price data for TRGP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:51,218, data_manager.py, 108, INFO, Getting stock price data for TRGP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:51,416, data_manager.py, 82, INFO, Saving data for TRGP by year\n", + "2024-10-23 21:21:51,416, data_manager.py, 82, INFO, Saving data for TRGP by year\n", + "2024-10-23 21:21:52,034, data_manager.py, 73, INFO, Processing ticker TGT\n", + "2024-10-23 21:21:52,034, data_manager.py, 73, INFO, Processing ticker TGT\n", + "2024-10-23 21:21:52,035, data_manager.py, 108, INFO, Getting stock price data for TGT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:52,035, data_manager.py, 108, INFO, Getting stock price data for TGT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:52,283, data_manager.py, 82, INFO, Saving data for TGT by year\n", + "2024-10-23 21:21:52,283, data_manager.py, 82, INFO, Saving data for TGT by year\n", + "2024-10-23 21:21:53,506, data_manager.py, 73, INFO, Processing ticker TEL\n", + "2024-10-23 21:21:53,506, data_manager.py, 73, INFO, Processing ticker TEL\n", + "2024-10-23 21:21:53,508, data_manager.py, 108, INFO, Getting stock price data for TEL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:53,508, data_manager.py, 108, INFO, Getting stock price data for TEL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:53,695, data_manager.py, 82, INFO, Saving data for TEL by year\n", + "2024-10-23 21:21:53,695, data_manager.py, 82, INFO, Saving data for TEL by year\n", + "2024-10-23 21:21:54,623, data_manager.py, 73, INFO, Processing ticker TDY\n", + "2024-10-23 21:21:54,623, data_manager.py, 73, INFO, Processing ticker TDY\n", + "2024-10-23 21:21:54,625, data_manager.py, 108, INFO, Getting stock price data for TDY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:54,625, data_manager.py, 108, INFO, Getting stock price data for TDY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:54,791, data_manager.py, 82, INFO, Saving data for TDY by year\n", + "2024-10-23 21:21:54,791, data_manager.py, 82, INFO, Saving data for TDY by year\n", + "2024-10-23 21:21:55,939, data_manager.py, 73, INFO, Processing ticker TFX\n", + "2024-10-23 21:21:55,939, data_manager.py, 73, INFO, Processing ticker TFX\n", + "2024-10-23 21:21:55,941, data_manager.py, 108, INFO, Getting stock price data for TFX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:55,941, data_manager.py, 108, INFO, Getting stock price data for TFX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:56,161, data_manager.py, 82, INFO, Saving data for TFX by year\n", + "2024-10-23 21:21:56,161, data_manager.py, 82, INFO, Saving data for TFX by year\n", + "2024-10-23 21:21:57,114, data_manager.py, 73, INFO, Processing ticker TER\n", + "2024-10-23 21:21:57,114, data_manager.py, 73, INFO, Processing ticker TER\n", + "2024-10-23 21:21:57,116, data_manager.py, 108, INFO, Getting stock price data for TER from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:57,116, data_manager.py, 108, INFO, Getting stock price data for TER from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:57,300, data_manager.py, 82, INFO, Saving data for TER by year\n", + "2024-10-23 21:21:57,300, data_manager.py, 82, INFO, Saving data for TER by year\n", + "2024-10-23 21:21:58,382, data_manager.py, 73, INFO, Processing ticker TSLA\n", + "2024-10-23 21:21:58,382, data_manager.py, 73, INFO, Processing ticker TSLA\n", + "2024-10-23 21:21:58,383, data_manager.py, 108, INFO, Getting stock price data for TSLA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:58,383, data_manager.py, 108, INFO, Getting stock price data for TSLA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:58,562, data_manager.py, 82, INFO, Saving data for TSLA by year\n", + "2024-10-23 21:21:58,562, data_manager.py, 82, INFO, Saving data for TSLA by year\n", + "2024-10-23 21:21:59,080, data_manager.py, 73, INFO, Processing ticker TXN\n", + "2024-10-23 21:21:59,080, data_manager.py, 73, INFO, Processing ticker TXN\n", + "2024-10-23 21:21:59,081, data_manager.py, 108, INFO, Getting stock price data for TXN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:21:59,081, data_manager.py, 108, INFO, Getting stock price data for TXN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:21:59,349, data_manager.py, 82, INFO, Saving data for TXN by year\n", + "2024-10-23 21:21:59,349, data_manager.py, 82, INFO, Saving data for TXN by year\n", + "2024-10-23 21:22:00,447, data_manager.py, 73, INFO, Processing ticker TXT\n", + "2024-10-23 21:22:00,447, data_manager.py, 73, INFO, Processing ticker TXT\n", + "2024-10-23 21:22:00,449, data_manager.py, 108, INFO, Getting stock price data for TXT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:00,449, data_manager.py, 108, INFO, Getting stock price data for TXT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:00,709, data_manager.py, 82, INFO, Saving data for TXT by year\n", + "2024-10-23 21:22:00,709, data_manager.py, 82, INFO, Saving data for TXT by year\n", + "2024-10-23 21:22:01,555, data_manager.py, 73, INFO, Processing ticker TMO\n", + "2024-10-23 21:22:01,555, data_manager.py, 73, INFO, Processing ticker TMO\n", + "2024-10-23 21:22:01,556, data_manager.py, 108, INFO, Getting stock price data for TMO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:01,556, data_manager.py, 108, INFO, Getting stock price data for TMO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:01,800, data_manager.py, 82, INFO, Saving data for TMO by year\n", + "2024-10-23 21:22:01,800, data_manager.py, 82, INFO, Saving data for TMO by year\n", + "2024-10-23 21:22:02,735, data_manager.py, 73, INFO, Processing ticker TJX\n", + "2024-10-23 21:22:02,735, data_manager.py, 73, INFO, Processing ticker TJX\n", + "2024-10-23 21:22:02,736, data_manager.py, 108, INFO, Getting stock price data for TJX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:02,736, data_manager.py, 108, INFO, Getting stock price data for TJX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:02,971, data_manager.py, 82, INFO, Saving data for TJX by year\n", + "2024-10-23 21:22:02,971, data_manager.py, 82, INFO, Saving data for TJX by year\n", + "2024-10-23 21:22:04,298, data_manager.py, 73, INFO, Processing ticker TSCO\n", + "2024-10-23 21:22:04,298, data_manager.py, 73, INFO, Processing ticker TSCO\n", + "2024-10-23 21:22:04,299, data_manager.py, 108, INFO, Getting stock price data for TSCO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:04,299, data_manager.py, 108, INFO, Getting stock price data for TSCO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:04,514, data_manager.py, 82, INFO, Saving data for TSCO by year\n", + "2024-10-23 21:22:04,514, data_manager.py, 82, INFO, Saving data for TSCO by year\n", + "2024-10-23 21:22:05,796, data_manager.py, 73, INFO, Processing ticker TT\n", + "2024-10-23 21:22:05,796, data_manager.py, 73, INFO, Processing ticker TT\n", + "2024-10-23 21:22:05,797, data_manager.py, 108, INFO, Getting stock price data for TT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:05,797, data_manager.py, 108, INFO, Getting stock price data for TT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:06,143, data_manager.py, 82, INFO, Saving data for TT by year\n", + "2024-10-23 21:22:06,143, data_manager.py, 82, INFO, Saving data for TT by year\n", + "2024-10-23 21:22:07,100, data_manager.py, 73, INFO, Processing ticker TDG\n", + "2024-10-23 21:22:07,100, data_manager.py, 73, INFO, Processing ticker TDG\n", + "2024-10-23 21:22:07,101, data_manager.py, 108, INFO, Getting stock price data for TDG from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:07,101, data_manager.py, 108, INFO, Getting stock price data for TDG from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:07,360, data_manager.py, 82, INFO, Saving data for TDG by year\n", + "2024-10-23 21:22:07,360, data_manager.py, 82, INFO, Saving data for TDG by year\n", + "2024-10-23 21:22:08,133, data_manager.py, 73, INFO, Processing ticker TRV\n", + "2024-10-23 21:22:08,133, data_manager.py, 73, INFO, Processing ticker TRV\n", + "2024-10-23 21:22:08,134, data_manager.py, 108, INFO, Getting stock price data for TRV from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:08,134, data_manager.py, 108, INFO, Getting stock price data for TRV from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:08,477, data_manager.py, 82, INFO, Saving data for TRV by year\n", + "2024-10-23 21:22:08,477, data_manager.py, 82, INFO, Saving data for TRV by year\n", + "2024-10-23 21:22:09,495, data_manager.py, 73, INFO, Processing ticker TRMB\n", + "2024-10-23 21:22:09,495, data_manager.py, 73, INFO, Processing ticker TRMB\n", + "2024-10-23 21:22:09,496, data_manager.py, 108, INFO, Getting stock price data for TRMB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:09,496, data_manager.py, 108, INFO, Getting stock price data for TRMB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:09,800, data_manager.py, 82, INFO, Saving data for TRMB by year\n", + "2024-10-23 21:22:09,800, data_manager.py, 82, INFO, Saving data for TRMB by year\n", + "2024-10-23 21:22:10,710, data_manager.py, 73, INFO, Processing ticker TFC\n", + "2024-10-23 21:22:10,710, data_manager.py, 73, INFO, Processing ticker TFC\n", + "2024-10-23 21:22:10,711, data_manager.py, 108, INFO, Getting stock price data for TFC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:10,711, data_manager.py, 108, INFO, Getting stock price data for TFC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:11,144, data_manager.py, 82, INFO, Saving data for TFC by year\n", + "2024-10-23 21:22:11,144, data_manager.py, 82, INFO, Saving data for TFC by year\n", + "2024-10-23 21:22:12,155, data_manager.py, 73, INFO, Processing ticker TYL\n", + "2024-10-23 21:22:12,155, data_manager.py, 73, INFO, Processing ticker TYL\n", + "2024-10-23 21:22:12,157, data_manager.py, 108, INFO, Getting stock price data for TYL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:12,157, data_manager.py, 108, INFO, Getting stock price data for TYL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:12,416, data_manager.py, 82, INFO, Saving data for TYL by year\n", + "2024-10-23 21:22:12,416, data_manager.py, 82, INFO, Saving data for TYL by year\n", + "2024-10-23 21:22:13,374, data_manager.py, 73, INFO, Processing ticker TSN\n", + "2024-10-23 21:22:13,374, data_manager.py, 73, INFO, Processing ticker TSN\n", + "2024-10-23 21:22:13,375, data_manager.py, 108, INFO, Getting stock price data for TSN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:13,375, data_manager.py, 108, INFO, Getting stock price data for TSN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:13,744, data_manager.py, 82, INFO, Saving data for TSN by year\n", + "2024-10-23 21:22:13,744, data_manager.py, 82, INFO, Saving data for TSN by year\n", + "2024-10-23 21:22:14,755, data_manager.py, 73, INFO, Processing ticker USB\n", + "2024-10-23 21:22:14,755, data_manager.py, 73, INFO, Processing ticker USB\n", + "2024-10-23 21:22:14,756, data_manager.py, 108, INFO, Getting stock price data for USB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:14,756, data_manager.py, 108, INFO, Getting stock price data for USB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:15,068, data_manager.py, 82, INFO, Saving data for USB by year\n", + "2024-10-23 21:22:15,068, data_manager.py, 82, INFO, Saving data for USB by year\n", + "2024-10-23 21:22:16,034, data_manager.py, 73, INFO, Processing ticker UBER\n", + "2024-10-23 21:22:16,034, data_manager.py, 73, INFO, Processing ticker UBER\n", + "2024-10-23 21:22:16,035, data_manager.py, 108, INFO, Getting stock price data for UBER from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:16,035, data_manager.py, 108, INFO, Getting stock price data for UBER from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:16,163, data_manager.py, 82, INFO, Saving data for UBER by year\n", + "2024-10-23 21:22:16,163, data_manager.py, 82, INFO, Saving data for UBER by year\n", + "2024-10-23 21:22:16,424, data_manager.py, 73, INFO, Processing ticker UDR\n", + "2024-10-23 21:22:16,424, data_manager.py, 73, INFO, Processing ticker UDR\n", + "2024-10-23 21:22:16,426, data_manager.py, 108, INFO, Getting stock price data for UDR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:16,426, data_manager.py, 108, INFO, Getting stock price data for UDR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:16,687, data_manager.py, 82, INFO, Saving data for UDR by year\n", + "2024-10-23 21:22:16,687, data_manager.py, 82, INFO, Saving data for UDR by year\n", + "2024-10-23 21:22:17,767, data_manager.py, 73, INFO, Processing ticker ULTA\n", + "2024-10-23 21:22:17,767, data_manager.py, 73, INFO, Processing ticker ULTA\n", + "2024-10-23 21:22:17,769, data_manager.py, 108, INFO, Getting stock price data for ULTA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:17,769, data_manager.py, 108, INFO, Getting stock price data for ULTA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:17,931, data_manager.py, 82, INFO, Saving data for ULTA by year\n", + "2024-10-23 21:22:17,931, data_manager.py, 82, INFO, Saving data for ULTA by year\n", + "2024-10-23 21:22:18,676, data_manager.py, 73, INFO, Processing ticker UNP\n", + "2024-10-23 21:22:18,676, data_manager.py, 73, INFO, Processing ticker UNP\n", + "2024-10-23 21:22:18,677, data_manager.py, 108, INFO, Getting stock price data for UNP from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:18,677, data_manager.py, 108, INFO, Getting stock price data for UNP from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:18,987, data_manager.py, 82, INFO, Saving data for UNP by year\n", + "2024-10-23 21:22:18,987, data_manager.py, 82, INFO, Saving data for UNP by year\n", + "2024-10-23 21:22:20,032, data_manager.py, 73, INFO, Processing ticker UAL\n", + "2024-10-23 21:22:20,032, data_manager.py, 73, INFO, Processing ticker UAL\n", + "2024-10-23 21:22:20,034, data_manager.py, 108, INFO, Getting stock price data for UAL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:20,034, data_manager.py, 108, INFO, Getting stock price data for UAL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:20,243, data_manager.py, 82, INFO, Saving data for UAL by year\n", + "2024-10-23 21:22:20,243, data_manager.py, 82, INFO, Saving data for UAL by year\n", + "2024-10-23 21:22:20,997, data_manager.py, 73, INFO, Processing ticker UPS\n", + "2024-10-23 21:22:20,997, data_manager.py, 73, INFO, Processing ticker UPS\n", + "2024-10-23 21:22:20,998, data_manager.py, 108, INFO, Getting stock price data for UPS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:20,998, data_manager.py, 108, INFO, Getting stock price data for UPS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:21,610, data_manager.py, 82, INFO, Saving data for UPS by year\n", + "2024-10-23 21:22:21,610, data_manager.py, 82, INFO, Saving data for UPS by year\n", + "2024-10-23 21:22:22,695, data_manager.py, 73, INFO, Processing ticker URI\n", + "2024-10-23 21:22:22,695, data_manager.py, 73, INFO, Processing ticker URI\n", + "2024-10-23 21:22:22,696, data_manager.py, 108, INFO, Getting stock price data for URI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:22,696, data_manager.py, 108, INFO, Getting stock price data for URI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:23,039, data_manager.py, 82, INFO, Saving data for URI by year\n", + "2024-10-23 21:22:23,039, data_manager.py, 82, INFO, Saving data for URI by year\n", + "2024-10-23 21:22:24,233, data_manager.py, 73, INFO, Processing ticker UNH\n", + "2024-10-23 21:22:24,233, data_manager.py, 73, INFO, Processing ticker UNH\n", + "2024-10-23 21:22:24,234, data_manager.py, 108, INFO, Getting stock price data for UNH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:24,234, data_manager.py, 108, INFO, Getting stock price data for UNH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:24,637, data_manager.py, 82, INFO, Saving data for UNH by year\n", + "2024-10-23 21:22:24,637, data_manager.py, 82, INFO, Saving data for UNH by year\n", + "2024-10-23 21:22:46,753, data_manager.py, 73, INFO, Processing ticker UHS\n", + "2024-10-23 21:22:46,753, data_manager.py, 73, INFO, Processing ticker UHS\n", + "2024-10-23 21:22:25,722, data_manager.py, 108, INFO, Getting stock price data for UHS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:25,722, data_manager.py, 108, INFO, Getting stock price data for UHS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:26,136, data_manager.py, 82, INFO, Saving data for UHS by year\n", + "2024-10-23 21:22:26,136, data_manager.py, 82, INFO, Saving data for UHS by year\n", + "2024-10-23 21:22:27,163, data_manager.py, 73, INFO, Processing ticker VLO\n", + "2024-10-23 21:22:27,163, data_manager.py, 73, INFO, Processing ticker VLO\n", + "2024-10-23 21:22:27,164, data_manager.py, 108, INFO, Getting stock price data for VLO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:27,164, data_manager.py, 108, INFO, Getting stock price data for VLO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:27,587, data_manager.py, 82, INFO, Saving data for VLO by year\n", + "2024-10-23 21:22:27,587, data_manager.py, 82, INFO, Saving data for VLO by year\n", + "2024-10-23 21:22:28,566, data_manager.py, 73, INFO, Processing ticker VTR\n", + "2024-10-23 21:22:28,566, data_manager.py, 73, INFO, Processing ticker VTR\n", + "2024-10-23 21:22:28,568, data_manager.py, 108, INFO, Getting stock price data for VTR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:28,568, data_manager.py, 108, INFO, Getting stock price data for VTR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:29,102, data_manager.py, 82, INFO, Saving data for VTR by year\n", + "2024-10-23 21:22:29,102, data_manager.py, 82, INFO, Saving data for VTR by year\n", + "2024-10-23 21:22:30,063, data_manager.py, 73, INFO, Processing ticker VLTO\n", + "2024-10-23 21:22:30,063, data_manager.py, 73, INFO, Processing ticker VLTO\n", + "2024-10-23 21:22:30,064, data_manager.py, 108, INFO, Getting stock price data for VLTO from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:30,064, data_manager.py, 108, INFO, Getting stock price data for VLTO from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:30,150, data_manager.py, 82, INFO, Saving data for VLTO by year\n", + "2024-10-23 21:22:30,150, data_manager.py, 82, INFO, Saving data for VLTO by year\n", + "2024-10-23 21:22:30,237, data_manager.py, 73, INFO, Processing ticker VRSN\n", + "2024-10-23 21:22:30,237, data_manager.py, 73, INFO, Processing ticker VRSN\n", + "2024-10-23 21:22:30,239, data_manager.py, 108, INFO, Getting stock price data for VRSN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:30,239, data_manager.py, 108, INFO, Getting stock price data for VRSN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:30,543, data_manager.py, 82, INFO, Saving data for VRSN by year\n", + "2024-10-23 21:22:30,543, data_manager.py, 82, INFO, Saving data for VRSN by year\n", + "2024-10-23 21:22:31,467, data_manager.py, 73, INFO, Processing ticker VRSK\n", + "2024-10-23 21:22:31,467, data_manager.py, 73, INFO, Processing ticker VRSK\n", + "2024-10-23 21:22:31,468, data_manager.py, 108, INFO, Getting stock price data for VRSK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:31,468, data_manager.py, 108, INFO, Getting stock price data for VRSK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:31,726, data_manager.py, 82, INFO, Saving data for VRSK by year\n", + "2024-10-23 21:22:31,726, data_manager.py, 82, INFO, Saving data for VRSK by year\n", + "2024-10-23 21:22:32,368, data_manager.py, 73, INFO, Processing ticker VZ\n", + "2024-10-23 21:22:32,368, data_manager.py, 73, INFO, Processing ticker VZ\n", + "2024-10-23 21:22:32,369, data_manager.py, 108, INFO, Getting stock price data for VZ from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:32,369, data_manager.py, 108, INFO, Getting stock price data for VZ from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:32,734, data_manager.py, 82, INFO, Saving data for VZ by year\n", + "2024-10-23 21:22:32,734, data_manager.py, 82, INFO, Saving data for VZ by year\n", + "2024-10-23 21:22:33,742, data_manager.py, 73, INFO, Processing ticker VRTX\n", + "2024-10-23 21:22:33,742, data_manager.py, 73, INFO, Processing ticker VRTX\n", + "2024-10-23 21:22:33,743, data_manager.py, 108, INFO, Getting stock price data for VRTX from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:33,743, data_manager.py, 108, INFO, Getting stock price data for VRTX from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:34,021, data_manager.py, 82, INFO, Saving data for VRTX by year\n", + "2024-10-23 21:22:34,021, data_manager.py, 82, INFO, Saving data for VRTX by year\n", + "2024-10-23 21:22:35,113, data_manager.py, 73, INFO, Processing ticker VFC\n", + "2024-10-23 21:22:35,113, data_manager.py, 73, INFO, Processing ticker VFC\n", + "2024-10-23 21:22:35,114, data_manager.py, 108, INFO, Getting stock price data for VFC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:35,114, data_manager.py, 108, INFO, Getting stock price data for VFC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:35,526, data_manager.py, 82, INFO, Saving data for VFC by year\n", + "2024-10-23 21:22:35,526, data_manager.py, 82, INFO, Saving data for VFC by year\n", + "2024-10-23 21:22:36,474, data_manager.py, 73, INFO, Processing ticker VTRS\n", + "2024-10-23 21:22:36,474, data_manager.py, 73, INFO, Processing ticker VTRS\n", + "2024-10-23 21:22:36,475, data_manager.py, 108, INFO, Getting stock price data for VTRS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:36,475, data_manager.py, 108, INFO, Getting stock price data for VTRS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:36,844, data_manager.py, 82, INFO, Saving data for VTRS by year\n", + "2024-10-23 21:22:36,844, data_manager.py, 82, INFO, Saving data for VTRS by year\n", + "2024-10-23 21:22:37,801, data_manager.py, 73, INFO, Processing ticker VICI\n", + "2024-10-23 21:22:37,801, data_manager.py, 73, INFO, Processing ticker VICI\n", + "2024-10-23 21:22:37,802, data_manager.py, 108, INFO, Getting stock price data for VICI from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:37,802, data_manager.py, 108, INFO, Getting stock price data for VICI from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:38,039, data_manager.py, 82, INFO, Saving data for VICI by year\n", + "2024-10-23 21:22:38,039, data_manager.py, 82, INFO, Saving data for VICI by year\n", + "2024-10-23 21:22:38,279, data_manager.py, 73, INFO, Processing ticker V\n", + "2024-10-23 21:22:38,279, data_manager.py, 73, INFO, Processing ticker V\n", + "2024-10-23 21:22:38,280, data_manager.py, 108, INFO, Getting stock price data for V from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:38,280, data_manager.py, 108, INFO, Getting stock price data for V from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:38,718, data_manager.py, 82, INFO, Saving data for V by year\n", + "2024-10-23 21:22:38,718, data_manager.py, 82, INFO, Saving data for V by year\n", + "2024-10-23 21:22:39,442, data_manager.py, 73, INFO, Processing ticker VMC\n", + "2024-10-23 21:22:39,442, data_manager.py, 73, INFO, Processing ticker VMC\n", + "2024-10-23 21:22:39,444, data_manager.py, 108, INFO, Getting stock price data for VMC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:39,444, data_manager.py, 108, INFO, Getting stock price data for VMC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:39,994, data_manager.py, 82, INFO, Saving data for VMC by year\n", + "2024-10-23 21:22:39,994, data_manager.py, 82, INFO, Saving data for VMC by year\n", + "2024-10-23 21:22:40,848, data_manager.py, 73, INFO, Processing ticker WRB\n", + "2024-10-23 21:22:40,848, data_manager.py, 73, INFO, Processing ticker WRB\n", + "2024-10-23 21:22:40,850, data_manager.py, 108, INFO, Getting stock price data for WRB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:40,850, data_manager.py, 108, INFO, Getting stock price data for WRB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:41,490, data_manager.py, 82, INFO, Saving data for WRB by year\n", + "2024-10-23 21:22:41,490, data_manager.py, 82, INFO, Saving data for WRB by year\n", + "2024-10-23 21:22:42,418, data_manager.py, 73, INFO, Processing ticker WAB\n", + "2024-10-23 21:22:42,418, data_manager.py, 73, INFO, Processing ticker WAB\n", + "2024-10-23 21:22:42,420, data_manager.py, 108, INFO, Getting stock price data for WAB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:42,420, data_manager.py, 108, INFO, Getting stock price data for WAB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:42,789, data_manager.py, 82, INFO, Saving data for WAB by year\n", + "2024-10-23 21:22:42,789, data_manager.py, 82, INFO, Saving data for WAB by year\n", + "2024-10-23 21:22:43,929, data_manager.py, 73, INFO, Processing ticker WBA\n", + "2024-10-23 21:22:43,929, data_manager.py, 73, INFO, Processing ticker WBA\n", + "2024-10-23 21:22:43,930, data_manager.py, 108, INFO, Getting stock price data for WBA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:43,930, data_manager.py, 108, INFO, Getting stock price data for WBA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:44,351, data_manager.py, 82, INFO, Saving data for WBA by year\n", + "2024-10-23 21:22:44,351, data_manager.py, 82, INFO, Saving data for WBA by year\n", + "2024-10-23 21:22:45,612, data_manager.py, 73, INFO, Processing ticker WMT\n", + "2024-10-23 21:22:45,612, data_manager.py, 73, INFO, Processing ticker WMT\n", + "2024-10-23 21:22:45,613, data_manager.py, 108, INFO, Getting stock price data for WMT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:45,613, data_manager.py, 108, INFO, Getting stock price data for WMT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:45,999, data_manager.py, 82, INFO, Saving data for WMT by year\n", + "2024-10-23 21:22:45,999, data_manager.py, 82, INFO, Saving data for WMT by year\n", + "2024-10-23 21:22:47,050, data_manager.py, 73, INFO, Processing ticker DIS\n", + "2024-10-23 21:22:47,050, data_manager.py, 73, INFO, Processing ticker DIS\n", + "2024-10-23 21:22:47,052, data_manager.py, 108, INFO, Getting stock price data for DIS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:47,052, data_manager.py, 108, INFO, Getting stock price data for DIS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:47,678, data_manager.py, 82, INFO, Saving data for DIS by year\n", + "2024-10-23 21:22:47,678, data_manager.py, 82, INFO, Saving data for DIS by year\n", + "2024-10-23 21:22:48,622, data_manager.py, 73, INFO, Processing ticker WBD\n", + "2024-10-23 21:22:48,622, data_manager.py, 73, INFO, Processing ticker WBD\n", + "2024-10-23 21:22:48,623, data_manager.py, 108, INFO, Getting stock price data for WBD from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:48,623, data_manager.py, 108, INFO, Getting stock price data for WBD from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:48,960, data_manager.py, 82, INFO, Saving data for WBD by year\n", + "2024-10-23 21:22:48,960, data_manager.py, 82, INFO, Saving data for WBD by year\n", + "2024-10-23 21:22:49,712, data_manager.py, 73, INFO, Processing ticker WM\n", + "2024-10-23 21:22:49,712, data_manager.py, 73, INFO, Processing ticker WM\n", + "2024-10-23 21:22:49,714, data_manager.py, 108, INFO, Getting stock price data for WM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:49,714, data_manager.py, 108, INFO, Getting stock price data for WM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:50,072, data_manager.py, 82, INFO, Saving data for WM by year\n", + "2024-10-23 21:22:50,072, data_manager.py, 82, INFO, Saving data for WM by year\n", + "2024-10-23 21:22:50,978, data_manager.py, 73, INFO, Processing ticker WAT\n", + "2024-10-23 21:22:50,978, data_manager.py, 73, INFO, Processing ticker WAT\n", + "2024-10-23 21:22:50,979, data_manager.py, 108, INFO, Getting stock price data for WAT from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:50,979, data_manager.py, 108, INFO, Getting stock price data for WAT from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:51,364, data_manager.py, 82, INFO, Saving data for WAT by year\n", + "2024-10-23 21:22:51,364, data_manager.py, 82, INFO, Saving data for WAT by year\n", + "2024-10-23 21:22:52,405, data_manager.py, 73, INFO, Processing ticker WEC\n", + "2024-10-23 21:22:52,405, data_manager.py, 73, INFO, Processing ticker WEC\n", + "2024-10-23 21:22:52,407, data_manager.py, 108, INFO, Getting stock price data for WEC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:52,407, data_manager.py, 108, INFO, Getting stock price data for WEC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:52,907, data_manager.py, 82, INFO, Saving data for WEC by year\n", + "2024-10-23 21:22:52,907, data_manager.py, 82, INFO, Saving data for WEC by year\n", + "2024-10-23 21:22:53,932, data_manager.py, 73, INFO, Processing ticker WFC\n", + "2024-10-23 21:22:53,932, data_manager.py, 73, INFO, Processing ticker WFC\n", + "2024-10-23 21:22:53,934, data_manager.py, 108, INFO, Getting stock price data for WFC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:53,934, data_manager.py, 108, INFO, Getting stock price data for WFC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:54,481, data_manager.py, 82, INFO, Saving data for WFC by year\n", + "2024-10-23 21:22:54,481, data_manager.py, 82, INFO, Saving data for WFC by year\n", + "2024-10-23 21:22:55,452, data_manager.py, 73, INFO, Processing ticker WELL\n", + "2024-10-23 21:22:55,452, data_manager.py, 73, INFO, Processing ticker WELL\n", + "2024-10-23 21:22:55,453, data_manager.py, 108, INFO, Getting stock price data for WELL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:55,453, data_manager.py, 108, INFO, Getting stock price data for WELL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:55,959, data_manager.py, 82, INFO, Saving data for WELL by year\n", + "2024-10-23 21:22:55,959, data_manager.py, 82, INFO, Saving data for WELL by year\n", + "2024-10-23 21:22:57,037, data_manager.py, 73, INFO, Processing ticker WST\n", + "2024-10-23 21:22:57,037, data_manager.py, 73, INFO, Processing ticker WST\n", + "2024-10-23 21:22:57,039, data_manager.py, 108, INFO, Getting stock price data for WST from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:57,039, data_manager.py, 108, INFO, Getting stock price data for WST from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:57,567, data_manager.py, 82, INFO, Saving data for WST by year\n", + "2024-10-23 21:22:57,567, data_manager.py, 82, INFO, Saving data for WST by year\n", + "2024-10-23 21:22:58,483, data_manager.py, 73, INFO, Processing ticker WDC\n", + "2024-10-23 21:22:58,483, data_manager.py, 73, INFO, Processing ticker WDC\n", + "2024-10-23 21:22:58,485, data_manager.py, 108, INFO, Getting stock price data for WDC from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:58,485, data_manager.py, 108, INFO, Getting stock price data for WDC from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:22:58,882, data_manager.py, 82, INFO, Saving data for WDC by year\n", + "2024-10-23 21:22:58,882, data_manager.py, 82, INFO, Saving data for WDC by year\n", + "2024-10-23 21:22:59,772, data_manager.py, 73, INFO, Processing ticker WRK\n", + "2024-10-23 21:22:59,772, data_manager.py, 73, INFO, Processing ticker WRK\n", + "2024-10-23 21:22:59,773, data_manager.py, 108, INFO, Getting stock price data for WRK from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:22:59,773, data_manager.py, 108, INFO, Getting stock price data for WRK from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "\n", + "1 Failed download:\n", + "['WRK']: YFTzMissingError('$%ticker%: possibly delisted; No timezone found')\n", + "2024-10-23 21:23:01,176, data_manager.py, 82, INFO, Saving data for WRK by year\n", + "2024-10-23 21:23:01,176, data_manager.py, 82, INFO, Saving data for WRK by year\n", + "2024-10-23 21:23:01,178, data_manager.py, 100, WARNING, No data found for WRK\n", + "2024-10-23 21:23:01,178, data_manager.py, 100, WARNING, No data found for WRK\n", + "2024-10-23 21:23:01,179, data_manager.py, 73, INFO, Processing ticker WY\n", + "2024-10-23 21:23:01,179, data_manager.py, 73, INFO, Processing ticker WY\n", + "2024-10-23 21:23:01,181, data_manager.py, 108, INFO, Getting stock price data for WY from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:01,181, data_manager.py, 108, INFO, Getting stock price data for WY from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:01,557, data_manager.py, 82, INFO, Saving data for WY by year\n", + "2024-10-23 21:23:01,557, data_manager.py, 82, INFO, Saving data for WY by year\n", + "2024-10-23 21:23:02,596, data_manager.py, 73, INFO, Processing ticker WHR\n", + "2024-10-23 21:23:02,596, data_manager.py, 73, INFO, Processing ticker WHR\n", + "2024-10-23 21:23:02,598, data_manager.py, 108, INFO, Getting stock price data for WHR from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:02,598, data_manager.py, 108, INFO, Getting stock price data for WHR from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:02,971, data_manager.py, 82, INFO, Saving data for WHR by year\n", + "2024-10-23 21:23:02,971, data_manager.py, 82, INFO, Saving data for WHR by year\n", + "2024-10-23 21:23:03,945, data_manager.py, 73, INFO, Processing ticker WMB\n", + "2024-10-23 21:23:03,945, data_manager.py, 73, INFO, Processing ticker WMB\n", + "2024-10-23 21:23:03,947, data_manager.py, 108, INFO, Getting stock price data for WMB from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:03,947, data_manager.py, 108, INFO, Getting stock price data for WMB from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:04,510, data_manager.py, 82, INFO, Saving data for WMB by year\n", + "2024-10-23 21:23:04,510, data_manager.py, 82, INFO, Saving data for WMB by year\n", + "2024-10-23 21:23:05,427, data_manager.py, 73, INFO, Processing ticker WTW\n", + "2024-10-23 21:23:05,427, data_manager.py, 73, INFO, Processing ticker WTW\n", + "2024-10-23 21:23:05,428, data_manager.py, 108, INFO, Getting stock price data for WTW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:05,428, data_manager.py, 108, INFO, Getting stock price data for WTW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:26,837, data_manager.py, 82, INFO, Saving data for WTW by year\n", + "2024-10-23 21:23:26,837, data_manager.py, 82, INFO, Saving data for WTW by year\n", + "2024-10-23 21:23:06,716, data_manager.py, 73, INFO, Processing ticker GWW\n", + "2024-10-23 21:23:06,716, data_manager.py, 73, INFO, Processing ticker GWW\n", + "2024-10-23 21:23:06,718, data_manager.py, 108, INFO, Getting stock price data for GWW from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:06,718, data_manager.py, 108, INFO, Getting stock price data for GWW from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:07,141, data_manager.py, 82, INFO, Saving data for GWW by year\n", + "2024-10-23 21:23:07,141, data_manager.py, 82, INFO, Saving data for GWW by year\n", + "2024-10-23 21:23:08,089, data_manager.py, 73, INFO, Processing ticker WYNN\n", + "2024-10-23 21:23:08,089, data_manager.py, 73, INFO, Processing ticker WYNN\n", + "2024-10-23 21:23:08,091, data_manager.py, 108, INFO, Getting stock price data for WYNN from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:08,091, data_manager.py, 108, INFO, Getting stock price data for WYNN from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:08,411, data_manager.py, 82, INFO, Saving data for WYNN by year\n", + "2024-10-23 21:23:08,411, data_manager.py, 82, INFO, Saving data for WYNN by year\n", + "2024-10-23 21:23:09,194, data_manager.py, 73, INFO, Processing ticker XEL\n", + "2024-10-23 21:23:09,194, data_manager.py, 73, INFO, Processing ticker XEL\n", + "2024-10-23 21:23:09,195, data_manager.py, 108, INFO, Getting stock price data for XEL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:09,195, data_manager.py, 108, INFO, Getting stock price data for XEL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:09,645, data_manager.py, 82, INFO, Saving data for XEL by year\n", + "2024-10-23 21:23:09,645, data_manager.py, 82, INFO, Saving data for XEL by year\n", + "2024-10-23 21:23:10,598, data_manager.py, 73, INFO, Processing ticker XYL\n", + "2024-10-23 21:23:10,598, data_manager.py, 73, INFO, Processing ticker XYL\n", + "2024-10-23 21:23:10,599, data_manager.py, 108, INFO, Getting stock price data for XYL from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:10,599, data_manager.py, 108, INFO, Getting stock price data for XYL from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:31,939, data_manager.py, 82, INFO, Saving data for XYL by year\n", + "2024-10-23 21:23:31,939, data_manager.py, 82, INFO, Saving data for XYL by year\n", + "2024-10-23 21:23:11,430, data_manager.py, 73, INFO, Processing ticker YUM\n", + "2024-10-23 21:23:11,430, data_manager.py, 73, INFO, Processing ticker YUM\n", + "2024-10-23 21:23:11,431, data_manager.py, 108, INFO, Getting stock price data for YUM from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:11,431, data_manager.py, 108, INFO, Getting stock price data for YUM from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:11,876, data_manager.py, 82, INFO, Saving data for YUM by year\n", + "2024-10-23 21:23:11,876, data_manager.py, 82, INFO, Saving data for YUM by year\n", + "2024-10-23 21:23:12,954, data_manager.py, 73, INFO, Processing ticker ZBRA\n", + "2024-10-23 21:23:12,954, data_manager.py, 73, INFO, Processing ticker ZBRA\n", + "2024-10-23 21:23:12,955, data_manager.py, 108, INFO, Getting stock price data for ZBRA from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:12,955, data_manager.py, 108, INFO, Getting stock price data for ZBRA from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:13,336, data_manager.py, 82, INFO, Saving data for ZBRA by year\n", + "2024-10-23 21:23:13,336, data_manager.py, 82, INFO, Saving data for ZBRA by year\n", + "2024-10-23 21:23:14,293, data_manager.py, 73, INFO, Processing ticker ZBH\n", + "2024-10-23 21:23:14,293, data_manager.py, 73, INFO, Processing ticker ZBH\n", + "2024-10-23 21:23:14,295, data_manager.py, 108, INFO, Getting stock price data for ZBH from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:14,295, data_manager.py, 108, INFO, Getting stock price data for ZBH from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:14,625, data_manager.py, 82, INFO, Saving data for ZBH by year\n", + "2024-10-23 21:23:14,625, data_manager.py, 82, INFO, Saving data for ZBH by year\n", + "2024-10-23 21:23:15,565, data_manager.py, 73, INFO, Processing ticker ZION\n", + "2024-10-23 21:23:15,565, data_manager.py, 73, INFO, Processing ticker ZION\n", + "2024-10-23 21:23:15,567, data_manager.py, 108, INFO, Getting stock price data for ZION from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:15,567, data_manager.py, 108, INFO, Getting stock price data for ZION from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:37,010, data_manager.py, 82, INFO, Saving data for ZION by year\n", + "2024-10-23 21:23:37,010, data_manager.py, 82, INFO, Saving data for ZION by year\n", + "2024-10-23 21:23:16,991, data_manager.py, 73, INFO, Processing ticker ZTS\n", + "2024-10-23 21:23:16,991, data_manager.py, 73, INFO, Processing ticker ZTS\n", + "2024-10-23 21:23:16,992, data_manager.py, 108, INFO, Getting stock price data for ZTS from 2000-01-01 to 2024-10-23\n", + "2024-10-23 21:23:16,992, data_manager.py, 108, INFO, Getting stock price data for ZTS from 2000-01-01 to 2024-10-23\n", + "[*********************100%%**********************] 1 of 1 completed\n", + "2024-10-23 21:23:17,250, data_manager.py, 82, INFO, Saving data for ZTS by year\n", + "2024-10-23 21:23:17,250, data_manager.py, 82, INFO, Saving data for ZTS by year\n" + ] + } + ], "source": [ "\n", "dm.download_all()" @@ -609,9 +4788,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-10-23 21:23:17,666, data_manager.py, 117, INFO, Creating features data.\n", + "2024-10-23 21:23:17,666, data_manager.py, 117, INFO, Creating features data.\n", + "2024-10-23 21:23:17,667, data_manager.py, 128, INFO, Loading price data from ../../05_src/data/prices/\n", + "2024-10-23 21:23:17,667, data_manager.py, 128, INFO, Loading price data from ../../05_src/data/prices/\n", + "/home/alex8642/miniconda3/envs/dsi_participant/lib/python3.9/site-packages/dask/dataframe/core.py:5517: UserWarning: New index has same name as existing, this is a no-op.\n", + " warnings.warn(\n", + "2024-10-23 21:23:18,131, data_manager.py, 136, INFO, Creating features\n", + "2024-10-23 21:23:18,131, data_manager.py, 136, INFO, Creating features\n", + "/home/alex8642/dsi/production/01_materials/labs/../../05_src/data_manager.py:138: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .apply(func)\n", + " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .apply(func, meta=('x', 'f8')) for series result\n", + " features = (price_dd\n", + "2024-10-23 21:23:18,314, data_manager.py, 154, INFO, Creating target\n", + "2024-10-23 21:23:18,314, data_manager.py, 154, INFO, Creating target\n", + "/home/alex8642/dsi/production/01_materials/labs/../../05_src/data_manager.py:155: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .apply(func)\n", + " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .apply(func, meta=('x', 'f8')) for series result\n", + " self.features = (self.features.groupby('ticker', group_keys=False).apply(\n", + "2024-10-23 21:23:18,364, data_manager.py, 164, INFO, Saving features to ../../05_src/data/features/stock_features.parquet\n", + "2024-10-23 21:23:18,364, data_manager.py, 164, INFO, Saving features to ../../05_src/data/features/stock_features.parquet\n" + ] + } + ], "source": [ "dm.featurize()" ] @@ -619,7 +4827,7 @@ ], "metadata": { "kernelspec": { - "display_name": "env", + "display_name": "dsi_participant", "language": "python", "name": "python3" }, @@ -633,7 +4841,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/01_materials/labs/03a_sampling.ipynb b/01_materials/labs/03a_sampling.ipynb index 6207aa9d9..44125d2ac 100644 --- a/01_materials/labs/03a_sampling.ipynb +++ b/01_materials/labs/03a_sampling.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -17,9 +17,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1945/1500862777.py:1: DeprecationWarning: The current Dask DataFrame implementation is deprecated. \n", + "In a future release, Dask DataFrame will use new implementation that\n", + "contains several improvements including a logical query planning.\n", + "The user-facing DataFrame API will remain unchanged.\n", + "\n", + "The new implementation is already available and can be enabled by\n", + "installing the dask-expr library:\n", + "\n", + " $ pip install dask-expr\n", + "\n", + "and turning the query planning option on:\n", + "\n", + " >>> import dask\n", + " >>> dask.config.set({'dataframe.query-planning': True})\n", + " >>> import dask.dataframe as dd\n", + "\n", + "API documentation for the new implementation is available at\n", + "https://docs.dask.org/en/stable/dask-expr-api.html\n", + "\n", + "Any feedback can be reported on the Dask issue tracker\n", + "https://github.com/dask/dask/issues \n", + "\n", + " import dask.dataframe as dd\n" + ] + } + ], "source": [ "import dask.dataframe as dd\n", "import pandas as pd\n", @@ -30,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -72,18 +102,197 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tickerDateOpenHighLowCloseAdj CloseVolumesectorsubsectoryearClose_lag_1returnspositive_returntarget
636458PAYC2022-10-10339.200012339.200012316.869995323.980011320.343262368200IndustrialsHuman Resource & Employment Services2022338.399994-0.04261200.0
217236KEYS2023-12-13149.460007153.070007148.759995152.309998152.3099982120200Information TechnologyElectronic Equipment & Instruments2023149.3699950.01968311.0
739262AWK2012-10-1837.29000137.43000037.06000137.27000029.126347616100UtilitiesWater Utilities201237.299999-0.00080401.0
219650DVA2008-09-3027.85000028.54999927.35500028.50499928.5049992650400Health CareHealth Care Services200827.5000000.03654510.0
633338PLD2020-11-24100.379997100.73000398.52999998.80999889.2097782746400Real EstateIndustrial REITs202099.559998-0.00753301.0
\n", + "
" + ], + "text/plain": [ + " ticker Date Open High Low Close \\\n", + "636458 PAYC 2022-10-10 339.200012 339.200012 316.869995 323.980011 \n", + "217236 KEYS 2023-12-13 149.460007 153.070007 148.759995 152.309998 \n", + "739262 AWK 2012-10-18 37.290001 37.430000 37.060001 37.270000 \n", + "219650 DVA 2008-09-30 27.850000 28.549999 27.355000 28.504999 \n", + "633338 PLD 2020-11-24 100.379997 100.730003 98.529999 98.809998 \n", + "\n", + " Adj Close Volume sector \\\n", + "636458 320.343262 368200 Industrials \n", + "217236 152.309998 2120200 Information Technology \n", + "739262 29.126347 616100 Utilities \n", + "219650 28.504999 2650400 Health Care \n", + "633338 89.209778 2746400 Real Estate \n", + "\n", + " subsector year Close_lag_1 returns \\\n", + "636458 Human Resource & Employment Services 2022 338.399994 -0.042612 \n", + "217236 Electronic Equipment & Instruments 2023 149.369995 0.019683 \n", + "739262 Water Utilities 2012 37.299999 -0.000804 \n", + "219650 Health Care Services 2008 27.500000 0.036545 \n", + "633338 Industrial REITs 2020 99.559998 -0.007533 \n", + "\n", + " positive_return target \n", + "636458 0 0.0 \n", + "217236 1 1.0 \n", + "739262 0 1.0 \n", + "219650 1 0.0 \n", + "633338 0 1.0 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df.sample(n = 5)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "['OXY', 'TXN', 'PCG', 'CBRE', 'ROK', 'AMT', 'D', 'YUM', 'PWR']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# select_tickers = df['ticker'].unique().tolist()[0:9]\n", "select_tickers = ['OXY', 'TXN', 'PCG', 'CBRE', 'ROK', 'AMT', 'D', 'YUM', 'PWR']\n", @@ -92,9 +301,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "((5506, 15), (55055, 15))" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "idx = df['ticker'].isin(select_tickers)\n", "small_df = df[idx]\n", @@ -111,18 +331,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHICAYAAAC/Gru4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6XElEQVR4nO3de1jUZf7/8dcAgqAwgQZEYmqhWZq12iLWrufTRtRauUWRrafK1CjN1XW3qDZt3U0t2Fwzj6Gx25Zrh28klmmGpzQszczKPBRoh3HUJFC8f3/sr8/VCJgcZLjx+biuz3U5n/s9M+87sXlxz+fgMsYYAQAAWCbA3w0AAABUByEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKQf5u4Ew5ceKEvvrqK4WHh8vlcvm7HQAAcBqMMTp8+LDi4uIUEHDqtZYGG2K++uorxcfH+7sNAABQDXv37lWLFi1OWdNgQ0x4eLik//1HiIiI8HM3AADgdBw6dEjx8fHO5/ipNNgQ8+NXSBEREYQYAAAsczqHgnBgLwAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKQf5uoD5qNfG1On2/Lx6/ps7ei7nVHuZWOxry3KS6nR9zqz0NeW4NCSsxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKVQ4xX375pW677TY1a9ZMYWFhuvzyy7Vp0yZn3BijjIwMxcXFKTQ0VD169NC2bdt8XqOkpERjxoxR8+bN1aRJE6WkpGjfvn0+NR6PR2lpaXK73XK73UpLS9PBgwerN0sAANDgVCnEeDweXXXVVWrUqJFef/11ffTRR3riiSd0zjnnODXTpk3T9OnTlZWVpY0bNyo2NlZ9+/bV4cOHnZr09HQtXbpUOTk5WrNmjY4cOaLk5GSVlZU5NampqSooKFBubq5yc3NVUFCgtLS0ms8YAAA0CFW6d9Jf//pXxcfHa/78+c6+Vq1aOX82xmjmzJmaPHmyBg0aJElauHChYmJitGTJEt15553yer2aO3eunnvuOfXp00eSlJ2drfj4eK1YsUL9+/fX9u3blZubq3Xr1ikxMVGSNGfOHCUlJWnHjh1q165dud5KSkpUUlLiPD506FBVpgYAACxTpZWYl19+WV26dNFNN92k6OhoXXHFFZozZ44zvmvXLhUVFalfv37OvpCQEHXv3l35+fmSpE2bNunYsWM+NXFxcerQoYNTs3btWrndbifASFLXrl3ldrudmpNNnTrV+erJ7XYrPj6+KlMDAACWqVKI+fzzzzVr1iwlJCTojTfe0F133aWxY8dq0aJFkqSioiJJUkxMjM/zYmJinLGioiIFBwcrMjLylDXR0dHl3j86OtqpOdmkSZPk9Xqdbe/evVWZGgAAsEyVvk46ceKEunTpoilTpkiSrrjiCm3btk2zZs3S7bff7tS5XC6f5xljyu072ck1FdWf6nVCQkIUEhJy2nMBAAB2q9JKzHnnnadLLrnEZ1/79u21Z88eSVJsbKwklVstOXDggLM6Exsbq9LSUnk8nlPW7N+/v9z7f/311+VWeQAAwNmpSiHmqquu0o4dO3z2ffLJJ7rgggskSa1bt1ZsbKzy8vKc8dLSUq1atUrdunWTJHXu3FmNGjXyqSksLNTWrVudmqSkJHm9Xm3YsMGpWb9+vbxer1MDAADOblX6Oum+++5Tt27dNGXKFA0ePFgbNmzQM888o2eeeUbS/74CSk9P15QpU5SQkKCEhARNmTJFYWFhSk1NlSS53W4NGzZM48aNU7NmzRQVFaXx48erY8eOztlK7du314ABAzRixAjNnj1bkjRy5EglJydXeGYSAAA4+1QpxFx55ZVaunSpJk2apEceeUStW7fWzJkzdeuttzo1EyZMUHFxsUaNGiWPx6PExEQtX75c4eHhTs2MGTMUFBSkwYMHq7i4WL1799aCBQsUGBjo1CxevFhjx451zmJKSUlRVlZWTecLAAAaiCqFGElKTk5WcnJypeMul0sZGRnKyMiotKZx48bKzMxUZmZmpTVRUVHKzs6uansAAOAswb2TAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEpB/m4AAADUnVYTX6uz9/ri8WvO6OuzEgMAAKxEiAEAAFaqUojJyMiQy+Xy2WJjY51xY4wyMjIUFxen0NBQ9ejRQ9u2bfN5jZKSEo0ZM0bNmzdXkyZNlJKSon379vnUeDwepaWlye12y+12Ky0tTQcPHqz+LAEAQINT5ZWYSy+9VIWFhc724YcfOmPTpk3T9OnTlZWVpY0bNyo2NlZ9+/bV4cOHnZr09HQtXbpUOTk5WrNmjY4cOaLk5GSVlZU5NampqSooKFBubq5yc3NVUFCgtLS0Gk4VAAA0JFU+sDcoKMhn9eVHxhjNnDlTkydP1qBBgyRJCxcuVExMjJYsWaI777xTXq9Xc+fO1XPPPac+ffpIkrKzsxUfH68VK1aof//+2r59u3Jzc7Vu3TolJiZKkubMmaOkpCTt2LFD7dq1q8l8AQBAA1HllZidO3cqLi5OrVu31s0336zPP/9ckrRr1y4VFRWpX79+Tm1ISIi6d++u/Px8SdKmTZt07Ngxn5q4uDh16NDBqVm7dq3cbrcTYCSpa9eucrvdTk1FSkpKdOjQIZ8NAAA0XFUKMYmJiVq0aJHeeOMNzZkzR0VFRerWrZu+/fZbFRUVSZJiYmJ8nhMTE+OMFRUVKTg4WJGRkaesiY6OLvfe0dHRTk1Fpk6d6hxD43a7FR8fX5WpAQAAy1QpxAwcOFA33HCDOnbsqD59+ui11/53rvnChQudGpfL5fMcY0y5fSc7uaai+p97nUmTJsnr9Trb3r17T2tOAADATjU6xbpJkybq2LGjdu7c6Rwnc/JqyYEDB5zVmdjYWJWWlsrj8ZyyZv/+/eXe6+uvvy63yvNTISEhioiI8NkAAEDDVaMQU1JSou3bt+u8885T69atFRsbq7y8PGe8tLRUq1atUrdu3SRJnTt3VqNGjXxqCgsLtXXrVqcmKSlJXq9XGzZscGrWr18vr9fr1AAAAFTp7KTx48fr2muvVcuWLXXgwAH95S9/0aFDhzRkyBC5XC6lp6drypQpSkhIUEJCgqZMmaKwsDClpqZKktxut4YNG6Zx48apWbNmioqK0vjx452vpySpffv2GjBggEaMGKHZs2dLkkaOHKnk5GTOTAIAAI4qhZh9+/bplltu0TfffKNzzz1XXbt21bp163TBBRdIkiZMmKDi4mKNGjVKHo9HiYmJWr58ucLDw53XmDFjhoKCgjR48GAVFxerd+/eWrBggQIDA52axYsXa+zYsc5ZTCkpKcrKyqqN+QIAgAaiSiEmJyfnlOMul0sZGRnKyMiotKZx48bKzMxUZmZmpTVRUVHKzs6uSmsAAOAsw72TAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWKlGIWbq1KlyuVxKT0939hljlJGRobi4OIWGhqpHjx7atm2bz/NKSko0ZswYNW/eXE2aNFFKSor27dvnU+PxeJSWlia32y232620tDQdPHiwJu0CAIAGpNohZuPGjXrmmWd02WWX+eyfNm2apk+frqysLG3cuFGxsbHq27evDh8+7NSkp6dr6dKlysnJ0Zo1a3TkyBElJyerrKzMqUlNTVVBQYFyc3OVm5urgoICpaWlVbddAADQwFQrxBw5ckS33nqr5syZo8jISGe/MUYzZ87U5MmTNWjQIHXo0EELFy7U0aNHtWTJEkmS1+vV3Llz9cQTT6hPnz664oorlJ2drQ8//FArVqyQJG3fvl25ubl69tlnlZSUpKSkJM2ZM0evvvqqduzYUQvTBgAAtqtWiLnnnnt0zTXXqE+fPj77d+3apaKiIvXr18/ZFxISou7duys/P1+StGnTJh07dsynJi4uTh06dHBq1q5dK7fbrcTERKema9eucrvdTs3JSkpKdOjQIZ8NAAA0XEFVfUJOTo42b96sjRs3lhsrKiqSJMXExPjsj4mJ0e7du52a4OBgnxWcH2t+fH5RUZGio6PLvX50dLRTc7KpU6fq4Ycfrup0AACApaq0ErN3717de++9ys7OVuPGjSutc7lcPo+NMeX2nezkmorqT/U6kyZNktfrdba9e/ee8v0AAIDdqhRiNm3apAMHDqhz584KCgpSUFCQVq1apaeeekpBQUHOCszJqyUHDhxwxmJjY1VaWiqPx3PKmv3795d7/6+//rrcKs+PQkJCFBER4bMBAICGq0ohpnfv3vrwww9VUFDgbF26dNGtt96qgoICtWnTRrGxscrLy3OeU1paqlWrVqlbt26SpM6dO6tRo0Y+NYWFhdq6datTk5SUJK/Xqw0bNjg169evl9frdWoAAMDZrUrHxISHh6tDhw4++5o0aaJmzZo5+9PT0zVlyhQlJCQoISFBU6ZMUVhYmFJTUyVJbrdbw4YN07hx49SsWTNFRUVp/Pjx6tixo3OgcPv27TVgwACNGDFCs2fPliSNHDlSycnJateuXY0nDQAA7FflA3t/zoQJE1RcXKxRo0bJ4/EoMTFRy5cvV3h4uFMzY8YMBQUFafDgwSouLlbv3r21YMECBQYGOjWLFy/W2LFjnbOYUlJSlJWVVdvtAgAAS9U4xLz99ts+j10ulzIyMpSRkVHpcxo3bqzMzExlZmZWWhMVFaXs7OyatgcAABoo7p0EAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgpSqFmFmzZumyyy5TRESEIiIilJSUpNdff90ZN8YoIyNDcXFxCg0NVY8ePbRt2zaf1ygpKdGYMWPUvHlzNWnSRCkpKdq3b59PjcfjUVpamtxut9xut9LS0nTw4MHqzxIAADQ4VQoxLVq00OOPP6733ntP7733nnr16qXrrrvOCSrTpk3T9OnTlZWVpY0bNyo2NlZ9+/bV4cOHnddIT0/X0qVLlZOTozVr1ujIkSNKTk5WWVmZU5OamqqCggLl5uYqNzdXBQUFSktLq6UpAwCAhiCoKsXXXnutz+PHHntMs2bN0rp163TJJZdo5syZmjx5sgYNGiRJWrhwoWJiYrRkyRLdeeed8nq9mjt3rp577jn16dNHkpSdna34+HitWLFC/fv31/bt25Wbm6t169YpMTFRkjRnzhwlJSVpx44dateuXW3MGwAAWK7ax8SUlZUpJydH33//vZKSkrRr1y4VFRWpX79+Tk1ISIi6d++u/Px8SdKmTZt07Ngxn5q4uDh16NDBqVm7dq3cbrcTYCSpa9eucrvdTk1FSkpKdOjQIZ8NAAA0XFUOMR9++KGaNm2qkJAQ3XXXXVq6dKkuueQSFRUVSZJiYmJ86mNiYpyxoqIiBQcHKzIy8pQ10dHR5d43OjraqanI1KlTnWNo3G634uPjqzo1AABgkSqHmHbt2qmgoEDr1q3T3XffrSFDhuijjz5yxl0ul0+9MabcvpOdXFNR/c+9zqRJk+T1ep1t7969pzslAABgoSqHmODgYF100UXq0qWLpk6dqk6dOunJJ59UbGysJJVbLTlw4ICzOhMbG6vS0lJ5PJ5T1uzfv7/c+3799dflVnl+KiQkxDlr6scNAAA0XDW+TowxRiUlJWrdurViY2OVl5fnjJWWlmrVqlXq1q2bJKlz585q1KiRT01hYaG2bt3q1CQlJcnr9WrDhg1Ozfr16+X1ep0aAACAKp2d9Mc//lEDBw5UfHy8Dh8+rJycHL399tvKzc2Vy+VSenq6pkyZooSEBCUkJGjKlCkKCwtTamqqJMntdmvYsGEaN26cmjVrpqioKI0fP14dO3Z0zlZq3769BgwYoBEjRmj27NmSpJEjRyo5OZkzkwAAgKNKIWb//v1KS0tTYWGh3G63LrvsMuXm5qpv376SpAkTJqi4uFijRo2Sx+NRYmKili9frvDwcOc1ZsyYoaCgIA0ePFjFxcXq3bu3FixYoMDAQKdm8eLFGjt2rHMWU0pKirKysmpjvgAAoIGoUoiZO3fuKcddLpcyMjKUkZFRaU3jxo2VmZmpzMzMSmuioqKUnZ1dldYAAMBZhnsnAQAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFKVQszUqVN15ZVXKjw8XNHR0br++uu1Y8cOnxpjjDIyMhQXF6fQ0FD16NFD27Zt86kpKSnRmDFj1Lx5czVp0kQpKSnat2+fT43H41FaWprcbrfcbrfS0tJ08ODB6s0SAAA0OFUKMatWrdI999yjdevWKS8vT8ePH1e/fv30/fffOzXTpk3T9OnTlZWVpY0bNyo2NlZ9+/bV4cOHnZr09HQtXbpUOTk5WrNmjY4cOaLk5GSVlZU5NampqSooKFBubq5yc3NVUFCgtLS0WpgyAABoCIKqUpybm+vzeP78+YqOjtamTZv061//WsYYzZw5U5MnT9agQYMkSQsXLlRMTIyWLFmiO++8U16vV3PnztVzzz2nPn36SJKys7MVHx+vFStWqH///tq+fbtyc3O1bt06JSYmSpLmzJmjpKQk7dixQ+3atauNuQMAAIvV6JgYr9crSYqKipIk7dq1S0VFRerXr59TExISou7duys/P1+StGnTJh07dsynJi4uTh06dHBq1q5dK7fb7QQYSeratavcbrdTc7KSkhIdOnTIZwMAAA1XtUOMMUb333+/rr76anXo0EGSVFRUJEmKiYnxqY2JiXHGioqKFBwcrMjIyFPWREdHl3vP6Ohop+ZkU6dOdY6fcbvdio+Pr+7UAACABaodYkaPHq0PPvhAzz//fLkxl8vl89gYU27fyU6uqaj+VK8zadIkeb1eZ9u7d+/pTAMAAFiqWiFmzJgxevnll7Vy5Uq1aNHC2R8bGytJ5VZLDhw44KzOxMbGqrS0VB6P55Q1+/fvL/e+X3/9dblVnh+FhIQoIiLCZwMAAA1XlUKMMUajR4/WSy+9pLfeekutW7f2GW/durViY2OVl5fn7CstLdWqVavUrVs3SVLnzp3VqFEjn5rCwkJt3brVqUlKSpLX69WGDRucmvXr18vr9To1AADg7Fals5PuueceLVmyRMuWLVN4eLiz4uJ2uxUaGiqXy6X09HRNmTJFCQkJSkhI0JQpUxQWFqbU1FSndtiwYRo3bpyaNWumqKgojR8/Xh07dnTOVmrfvr0GDBigESNGaPbs2ZKkkSNHKjk5mTOTAACApCqGmFmzZkmSevTo4bN//vz5uuOOOyRJEyZMUHFxsUaNGiWPx6PExEQtX75c4eHhTv2MGTMUFBSkwYMHq7i4WL1799aCBQsUGBjo1CxevFhjx451zmJKSUlRVlZWdeYIAAAaoCqFGGPMz9a4XC5lZGQoIyOj0prGjRsrMzNTmZmZldZERUUpOzu7Ku0BAICzCPdOAgAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsFKVQ8zq1at17bXXKi4uTi6XS//97399xo0xysjIUFxcnEJDQ9WjRw9t27bNp6akpERjxoxR8+bN1aRJE6WkpGjfvn0+NR6PR2lpaXK73XK73UpLS9PBgwerPEEAANAwVTnEfP/99+rUqZOysrIqHJ82bZqmT5+urKwsbdy4UbGxserbt68OHz7s1KSnp2vp0qXKycnRmjVrdOTIESUnJ6usrMypSU1NVUFBgXJzc5Wbm6uCggKlpaVVY4oAAKAhCqrqEwYOHKiBAwdWOGaM0cyZMzV58mQNGjRIkrRw4ULFxMRoyZIluvPOO+X1ejV37lw999xz6tOnjyQpOztb8fHxWrFihfr376/t27crNzdX69atU2JioiRpzpw5SkpK0o4dO9SuXbty711SUqKSkhLn8aFDh6o6NQAAYJFaPSZm165dKioqUr9+/Zx9ISEh6t69u/Lz8yVJmzZt0rFjx3xq4uLi1KFDB6dm7dq1crvdToCRpK5du8rtdjs1J5s6darz1ZPb7VZ8fHxtTg0AANQztRpiioqKJEkxMTE++2NiYpyxoqIiBQcHKzIy8pQ10dHR5V4/OjraqTnZpEmT5PV6nW3v3r01ng8AAKi/qvx10ulwuVw+j40x5fad7OSaiupP9TohISEKCQmpRrcAAMBGtboSExsbK0nlVksOHDjgrM7ExsaqtLRUHo/nlDX79+8v9/pff/11uVUeAABwdqrVENO6dWvFxsYqLy/P2VdaWqpVq1apW7dukqTOnTurUaNGPjWFhYXaunWrU5OUlCSv16sNGzY4NevXr5fX63VqAADA2a3KXycdOXJEn376qfN4165dKigoUFRUlFq2bKn09HRNmTJFCQkJSkhI0JQpUxQWFqbU1FRJktvt1rBhwzRu3Dg1a9ZMUVFRGj9+vDp27OicrdS+fXsNGDBAI0aM0OzZsyVJI0eOVHJycoVnJgEAgLNPlUPMe++9p549ezqP77//fknSkCFDtGDBAk2YMEHFxcUaNWqUPB6PEhMTtXz5coWHhzvPmTFjhoKCgjR48GAVFxerd+/eWrBggQIDA52axYsXa+zYsc5ZTCkpKZVemwYAAJx9qhxievToIWNMpeMul0sZGRnKyMiotKZx48bKzMxUZmZmpTVRUVHKzs6uansAAOAswb2TAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWIkQAwAArESIAQAAViLEAAAAKxFiAACAlQgxAADASoQYAABgJUIMAACwEiEGAABYiRADAACsRIgBAABWIsQAAAArEWIAAICVCDEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsBIhBgAAWKneh5inn35arVu3VuPGjdW5c2e98847/m4JAADUA/U6xPzrX/9Senq6Jk+erPfff1+/+tWvNHDgQO3Zs8ffrQEAAD+r1yFm+vTpGjZsmIYPH6727dtr5syZio+P16xZs/zdGgAA8LMgfzdQmdLSUm3atEkTJ0702d+vXz/l5+eXqy8pKVFJSYnz2Ov1SpIOHTpU5fc+UXK0ys+pier0WF3MrfYwt9rRkOcm1e38mFvtYW61ozpz+/E5xpifLzb11JdffmkkmXfffddn/2OPPWbatm1brv6hhx4yktjY2NjY2NgawLZ3796fzQr1diXmRy6Xy+exMabcPkmaNGmS7r//fufxiRMn9N1336lZs2YV1te2Q4cOKT4+Xnv37lVERMQZf7+6xNzsxNzsxNzs1ZDnV5dzM8bo8OHDiouL+9naehtimjdvrsDAQBUVFfnsP3DggGJiYsrVh4SEKCQkxGffOeeccyZbrFBERESD++H9EXOzE3OzE3OzV0OeX13Nze12n1ZdvT2wNzg4WJ07d1ZeXp7P/ry8PHXr1s1PXQEAgPqi3q7ESNL999+vtLQ0denSRUlJSXrmmWe0Z88e3XXXXf5uDQAA+Fm9DjG/+93v9O233+qRRx5RYWGhOnTooP/7v//TBRdc4O/WygkJCdFDDz1U7iuthoC52Ym52Ym52ashz6++zs1lzOmcwwQAAFC/1NtjYgAAAE6FEAMAAKxEiAEAAFYixAAAACsRYnBW2LNnz+ndhwMAYA3OTsJZITAwUIWFhYqOjvZ3K7Vu9erVp1X361//+gx3cmaMGzdOU6dOVXBwsL9bqVV79uw5rbqWLVue4U4AexFiqunEiRNasGCBXnrpJX3xxRdyuVxq3bq1brzxRqWlpdXJ/Zr85T//+Y9uvPFGf7dRJQEBASoqKmqQISYgIMD5eavsn7PL5VJZWVldtlVr2rRpo9DQUGVnZ+uKK67wdzu15qd/bz/10/vDuVwuHT9+vK5bqzVbt25Vhw4dTlnz+OOPa+LEiXXUEX7OJZdcojVr1igqKkqSNHLkSD322GM699xzJf3v1j+tWrXS0aN1e/f5yvB1UjUYY5SSkqLhw4fryy+/VMeOHXXppZdq9+7duuOOO/Tb3/7W3y3WyPHjx7Vt2zZ98sknPvuXLVumTp066dZbb/VTZ6hIZGSk4uPj9ec//1k7d+6Ux+Mpt3333Xf+brPatm7dqh49eigpKUmPPvqoTpw44e+WasX777+vzZs3V7g98MADCgkJcT5IbNW/f3998cUXlY7/9a9/1UMPPVR3DdWiwsJCTZ482Xl89dVX6xe/+IWzXXnllfryyy/92GH1fPzxxz7BOScnR4cPH3YeG2P0ww8/+KO1CtXrK/bWVwsWLNDq1av15ptvqmfPnj5jb731lq6//notWrRIt99+u586rL6PPvpIycnJ2r17tyTpuuuu06xZszR48GBt2bJFw4cP16uvvurnLqvn2WefVdOmTU9ZM3bs2DrqpvYUFhZq6dKlmjdvnqZNm6bf/OY3GjZsmAYMGNAgVgTDwsL0j3/8QzfeeKOGDRumV199VRMnTlRgYKBPXUpKip86rJ5OnTqV27dixQpNnDhRn3zyiSZMmKDx48f7obPa86tf/Up9+/bVu+++W24V9G9/+5v+/Oc/a/HixX7qrmaefvppHTx40Hm8ZcsWDR061Amer7/+umbMmKG///3vfuqwdlS0uluv/r9iUGV9+/Y1U6dOrXT8scceM/369avDjmrPtddea3r16mVeeeUVc/PNNxuXy2USEhLMww8/bA4dOuTv9qrN5XKZ+Ph406pVq0q31q1b+7vNGtuzZ495+OGHTZs2bcz5559v/vjHP5pjx475u61a89///tcEBgYal8vlswUEBPi7tRp57733TJ8+fUxISIi55557zP79+/3dUq04duyYGTBggOnUqZM5ePCgs//vf/+7CQoKMs8//7wfu6uZTp06meXLlzuPmzZtaj777DPncW5urrnkkkv80VqNuFwun5+/k+dVVFRUr/69EWKqISYmxrz//vuVjm/evNnExMTUXUO1KCYmxmzatMkYY4zH4zEul8s888wzfu6q5k7+h9nQff7556Znz54mICDAfPvtt/5up8aOHj1qxowZY0JCQkxGRkaDCWY7d+40gwcPNoGBgeaWW27x+bBoKI4ePWquuuoqc/XVV5vi4mIzY8YMExQUZBYvXuzv1mrE7Xb7/H399re/NUVFRc7jXbt2mdDQUH+0ViMBAQHmwIEDzuOmTZuazz//3Hlc30IMXydVw3fffaeYmJhKx2NiYuTxeOqwo9pz4MABnX/++ZKkc845R2FhYerevbufu6q5erX8eYaUlJToxRdf1Lx587R27Vpdc801eu2116w/riI/P19DhgxRSEiI3n33XXXu3NnfLdWKUaNGae7cuerZs6fee+89XX755f5u6YwIDQ3Va6+9pu7du6tz58765JNPNH/+fKWmpvq7tRo5fvy4vF6v8/ill17yGfd4PAoIsO+wU2OMevfuraCg/8WD4uJiXXvttc7ZgfXtQHNCTDWUlZU5f8EVCQwMrHd/0afL5XL5/MMLCAhQo0aN/NhR7TAN+CS8DRs2aP78+crJyVHr1q11xx136N///rf14eVHPXr00NixY/XYY4/Vuzvo1sQ///lPNW7cWAcOHNDQoUMrrdu8eXMddlW7Xn75ZefPd999t+6991799re/VUREhM+YbcczSVK7du2Un59f6Rlz77zzjtq2bVvHXdXcyQdaX3fddeVqbrjhhrpq52dxinU1BAQEaODAgZX+D7WkpES5ublWntIaEBAgt9vtrFwcPHhQERER5X6jsO1sl4cfflgPPPCAwsLC/N1KrQsICFDLli01ZMiQU65S2PhBIf3vOji2XuPmVB5++OHTqrP17B1Jp7USYevp/3/729/0+OOPa+XKlbrssst8xrZs2aJevXpp4sSJeuCBB/zU4dmBEFMNv//970+rbv78+We4k9q3cOHC06obMmTIGe6kdjXkC4s15A8KSXrwwQf14IMPVrr6uWfPHg0bNkx5eXl13BnOZseOHVOfPn2Un5+vvn37ql27dnK5XPr444+Vl5enpKQkvfnmmw1iJfunfvjhB2VlZdWbM+cIMTgr/PR03B9/5H96nIz5/xcYs/WDviFr2bKlmjVrpkWLFqljx44+Y88884zGjx+vq666Sq+//rqfOqyejz76SJdccskpa7Kzs3XbbbfVUUeoqtLSUk2fPl05OTnOdbUSEhJ0yy236L777rP2689vvvlG69evV6NGjdS7d28FBgbq2LFjevrppzV16lQdP35c33zzjb/blESIwUluu+029erVSz169FCbNm383U6tCQoKUosWLXTHHXfo2muvrfS3+oqu3QH/OnTokEaPHq1///vfeuihh/SHP/xB+/bt09ChQ/Xee+/p73//u4YPH+7vNqssNDRUjz76qMaNG1fuwPP9+/drxIgRWrlypc+Fxmz1wgsv6Pnnn9cnn3wil8ulhIQEpaamWnfl77NBfn6+rrnmGnm9XrlcLnXp0kXz58/X9ddfrxMnTig9PV1Dhw6tN1/NE2Lgo3fv3lq3bp1++OEHtWjRQj179lSvXr3Us2dPxcfH+7u9aisqKtLChQu1YMECeTwe3XbbbRo2bJjat2/v79ZqbNGiRRXud7vdateunS6++OI67ujMWLZsme68807FxsZq165dSkpK0pw5c6z9uXzxxRd19913q127dlqwYIEuvPBCSf9bfbn33nvVoUMHzZs3z9lvoxMnTuiWW27RCy+8oLZt2+riiy+WMUYff/yxPv30U9100016/vnnrTx70OPxKDs7W0OGDFFERITPmNfr1aJFiyocq+969+6tc889V3/60580b948zZw5U61atVJGRkb9vKWOH07rRj1XWlpqVq9ebR555BHTq1cvExYWZgICAsyFF15ohg8fbpYsWeLvFmvknXfeMUOHDjXh4eEmMTHRPPPMM6asrMzfbVXbOeecU+EWFBRkAgICTHJystUXKvxRYWGh6dOnj3G5XKZp06bmzTff9HdLNbZ//35z/fXXmyZNmpi//e1vJiUlxYSFhZmZM2eaEydO+Lu9GnviiSdMVFSUeeWVV8qNLVu2zERFRZkZM2bUfWO14JFHHjE33nhjpeM33XST+ctf/lKHHdWOZs2ama1btxpjjPn+++9NQECA+fe//+3nripHiMHPKikpMatWrTITJkwwERER9epCRzVRVFTUoC4Id7KysjKzYcMGc9lll5lx48b5u50aWbJkiYmKijK9evUyH3/8sXnggQdMcHCwGTt2rDl69Ki/26ux1NRUJ5x98MEH/m6n1nTs2NHMnTu30vFnn33WdOjQoQ47qj2dOnUyK1asqHR8xYoV5vLLL6/DjmpHRVfs3blzpx87OjVCDCpVXFxsVqxYYf70pz+Zq666ygQHB5uEhAQzfPhwf7dWI++++64ZNmyYiYiIMFdeeaWZNWuW1SsxPycvL8+0bdvW321U2w033GCaNm1qnnrqKZ/9+fn5pm3btiYhIcHk5+f7qbua+e6778wtt9xiwsLCzKRJk0ybNm1M+/btzYYNG/zdWq1o3Lix2b17d6XjX3zxhWncuHEddlR7mjZtesq57d6924SHh9dhR7UjICDAfPrpp8br9ZqDBw+a8PBws2XLFuP1en22+oKL3cHHypUrnW3jxo1q06aNunfvrtGjR6t79+4677zz/N1itRQWFmrRokWaP3++PB6Pbr31VuXn5+vSSy/1d2tn3EUXXaR9+/b5u41qKyws1Pvvv6+LLrpI0v/OnHC5XEpKStKWLVv0hz/8Qd27d1dpaamfO62aV199VSNGjFDLli21adMmXXzxxZo8ebLGjx+vq6++Wg888IAyMjJOeWHN+i40NFQHDx6s9NIFhw4dUmhoaB13VTsCAwP11VdfVTq3r776ytor9v70In3GGJ8L+pl6diYnB/bCx48XTps4caJuuOEGnXvuuf5uqVYEBwcrLi5OQ4YMUUpKSqXXbjj5olUNwZtvvqlRo0Zpx44d/m6lWk6cOKFDhw5p8uTJ+te//uXc0iMyMlI333yz/vKXv+iDDz6w7oJ4jRs31oMPPqiJEyeW+7DLy8vT8OHDFRkZqYKCAv80WAuuueYatWzZUrNmzapw/K677tLevXv12muv1XFnNdezZ08lJibq8ccfr3D8D3/4gzZs2KCVK1fWcWc1s2rVqtOqqze3o/HrOhDqnQkTJpjExEQTHBxsOnbsaEaPHm3+85//+NwQzEYn3/E4ICCgwd0J+WQnTpwwmzZtMp06dbL6mJhvv/3WtG3b1jRp0sSMHDnSzJgxw0yfPt2MGDHCNGnSxFx88cXmu+++83ebVbZly5ZTjnu9XjN06NA66ubMePfdd02jRo3MTTfdZNavX+98RbF27Vpz4403mkaNGpk1a9b4u81q+c9//mOCgoJMZmamOX78uLP/+PHj5qmnnjKNGjUyL7zwgh87PDuwEoMKHTlyRO+8847efvttvf3223r//ffVtm1bde/eXT179rTu+g67d+/+2RqPx2PlTfgiIyMrPO3xyJEjKisr04ABA/Svf/1LTZs29UN3NZeenq4333xTK1asKHfj1aKiIvXr10+9e/fWjBkz/NRh9QwdOlRPPvmkwsPD/d3KGbV06VKNHDmy3K1KIiMjNXv27Hp1H56qmjx5sqZOnarw8HC1adNGLpdLn332mY4cOaIHHnig0lUa2xhjtHLlShUXF6tbt26KjIz0d0sOQgxOy3fffafp06crMzPT+XBsCLxerxYvXqy5c+eqoKDAynk9+uijFX4vHxERoYsvvtj6a+G0atVKs2fPVv/+/Sscz83N1V133aUvvviibhurocDAQBUWFio6OtrfrZxxR48e1RtvvKGdO3dKktq2bat+/fopLCxMX375pc4//3w/d1h9Gzdu1OLFi7Vz507neJLU1FT98pe/9Hdr1XLw4EHde++92rx5s7p27aonnnhCv/nNb5Sfny9JOvfcc5WXl1dvvnonxKBCJ06c0MaNG52VmHfffVdHjhxRy5Yt1bNnTyvvC/VTb731lubNm6eXXnpJF1xwgW644QbdcMMNld6Rtj4755xzlJmZqbS0NH+3ckaEhITos88+U4sWLSoc37dvny666CL98MMPddxZzQQEBKioqOisCDEVKSoq0mOPPaZnn31WxcXF/m6nyo4ePaoHHnhA//3vf3Xs2DH17t1bmZmZat68ub9bq5Hhw4dr9erVuv322/Xqq68qICBAxhjNnDlTAQEBmjBhgpo2bapXXnnF363+j9++yEK9NG3aNDNw4EATERFhXC6XadGihbntttvM3Llzzeeff+7v9mpk79695tFHHzWtW7c20dHRZvTo0SYoKMhs27bN363VyD/+8Q8THh5uBg0aZL755ht/t1Pr4uLizDvvvFPp+OrVq01cXFwddlQ7XC6X9cea/RyPx2NSU1NN8+bNzXnnnWeefPJJU1ZWZv785z+b0NBQ06VLF2svnjl+/HgTFhZmRowYYcaOHWuaN29+yovf2SIuLs68/fbbxhhj9u3bZ1wul1m5cqUzvn79ehMTE+On7sojxMDHeeedZ1JTU82cOXPMp59+6u92as3AgQNNeHi4ueWWW8yrr77qHIjXEEKMMcZ8/vnnpmfPniYmJsYsW7bM3+3UqqFDh5pf//rXpqSkpNzYDz/8YLp3727lAbAul8ucc845JjIy8pSbze6++27TokULM27cOHPppZeagIAAM3DgQNOzZ0/ng9JWbdq0Mc8//7zzeP369SYoKMjnIF8bBQYGmq+++sp5HBoa6vNZUFhYWK9OguDrJPg4evSoxo8fr2XLljm3mn/qqaesXyINCgrS2LFjdffddyshIcHZ36hRI23ZsuVn7yZsi6ysLN13331q3759ueuLbN682U9d1cy+ffvUpUsXhYSE6J577nHuBfXRRx/p6aefVklJid577z3r7qEUEBCgmTNnyu12n7JuyJAhddRR7bvgggs0d+5c9enTR59//rkuuugijR07VjNnzvR3azUWHBysXbt2+RzPExoaqk8++cS6n8WfOvlrzvDwcG3ZssW5IfD+/fsVFxdXb44ftPcqSjgjMjIytHDhQt16661q3Lixnn/+ed1999164YUX/N1ajbzzzjuaN2+eunTpoosvvlhpaWn63e9+5++2atXu3bv14osvKioqStddd53VF0n7qRYtWmjt2rUaNWqUJk2apB9/73K5XOrbt6+ysrKs/dC4+eabG/QxMV999ZXzC0KbNm3UuHFjK+84XpGysjIFBwf77AsKCtLx48f91FHtefbZZ52zGY8fP64FCxY4v8jWt7uqsxIDHxdeeKEee+wx3XzzzZKkDRs26KqrrtIPP/ygwMBAP3dXc0ePHlVOTo7mzZunDRs2qKysTNOnT9fQoUOtPtV1zpw5GjdunPr06aPZs2c3mIsUnszj8ThnuFx00UWKioryc0fVdzacnRQYGKiioiLn5zE8PFwffPCBWrdu7efOai4gIEADBw5USEiIs++VV15Rr1691KRJE2ffSy+95I/2qq1Vq1andafqXbt21UE3P48QAx8NdYm0Ijt27NDcuXP13HPP6eDBg+rbt69efvllf7dVZQMGDNCGDRs0c+ZM3X777f5uB6fpbDg76eQP+oo+5CX7Pugl6fe///1p1dl+Jmd9R4iBj5N/c5Ia1m9PFSkrK9Mrr7yiefPmWRli+vbtq/nz51d6CjLgL3zQ2+ett97S6NGjtW7dOkVERPiMeb1edevWTf/85z/1q1/9yk8d+iLEwEdDXSIFAPy8lJQU9ezZU/fdd1+F40899ZRWrlyppUuX1nFnFSPEwAe/OQHA2euCCy5Qbm5upVf6/vjjj9WvXz/t2bOnjjurWMM4fQG1hnACAGev/fv3q1GjRpWOBwUF6euvv67Djk4t4OdLAADA2eD888/Xhx9+WOn4Bx98oPPOO68OOzo1QgwAAJAk/eY3v9GDDz5Y4b3IiouL9dBDDyk5OdkPnVWMY2IAAICk/32d9Itf/EKBgYEaPXq02rVrJ5fLpe3bt+sf//iHysrKtHnzZsXExPi7VUmEGAAA8BO7d+/W3XffrTfeeMPnCtn9+/fX008/rVatWvm3wZ8gxAAAgHI8Ho8+/fRTGWOUkJCgyMhIf7dUDiEGAABYiQN7AQCAlQgxAADASoQYAABgJUIMAACwEiEGgF+9/fbbcrlcOnjw4GnV9+jRQ+np6We0JwB2IMQAqFMnh5Bu3bqpsLBQbrfbf00BsBIhBoBfBQcHKzY2Vi6Xyy/vX1pa6pf3BVBzhBgAdeaOO+7QqlWr9OSTT8rlcsnlcmnBggXlvk5699131b17d4WFhSkyMlL9+/eXx+Op8DVzc3Pldru1aNEiSdKXX36p3/3ud4qMjFSzZs103XXX6YsvvvDp4frrr9fUqVMVFxentm3bnskpAziDCDEA6syTTz6ppKQkjRgxQoWFhSosLFR8fLxPTUFBgXr37q1LL71Ua9eu1Zo1a3TttdeqrKys3Ovl5ORo8ODBWrRokW6//XYdPXpUPXv2VNOmTbV69WqtWbNGTZs21YABA3xWXN58801t375deXl5evXVV8/4vAGcGUH+bgDA2cPtdis4OFhhYWGKjY2VJH388cc+NdOmTVOXLl309NNPO/suvfTScq/19NNP649//KOWLVumnj17SvpfqAkICNCzzz7rfD01f/58nXPOOXr77bfVr18/SVKTJk307LPPKjg4+IzME0DdIMQAqFcKCgp00003nbLmxRdf1P79+7VmzRr98pe/dPZv2rRJn376qcLDw33qf/jhB3322WfO444dOxJggAaAEAOgXgkNDf3Zmssvv1ybN2/W/PnzdeWVVzqrLidOnFDnzp21ePHics8599xznT83adKk9hoG4DccEwOgTgUHB1d4fMuPLrvsMr355punfI0LL7xQK1eu1LJlyzRmzBhn/y9+8Qvt3LlT0dHRuuiii3w2TuEGGh5CDIA61apVK61fv15ffPGFvvnmG504ccJnfNKkSdq4caNGjRqlDz74QB9//LFmzZqlb775xqeubdu2WrlypV588UXnujO33nqrmjdvruuuu07vvPOOdu3apVWrVunee+/Vvn376mqKAOoIIQZAnRo/frwCAwN1ySWX6Nxzz9WePXt8xtu2bavly5dry5Yt+uUvf6mkpCQtW7ZMQUHlv/1u166d3nrrLT3//PMaN26cwsLCtHr1arVs2VKDBg1S+/btNXToUBUXFysiIqKupgigjriMMcbfTQAAAFQVKzEAAMBKhBgAAGAlQgwAALASIQYAAFiJEAMAAKxEiAEAAFYixAAAACsRYgAAgJUIMQAAwEqEGAAAYCVCDAAAsNL/A5e8GonrACODAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "small_df['ticker'].value_counts().plot(kind='bar')" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHICAYAAABkoRGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1tElEQVR4nO3dfVzV9f3/8ecB5FJA8AJiYmKiXWDWtDmtDRHQLLVm5Uorm9pKU6O8mM6tqCY0t5TC6WapaKZsrZxdfDPRvKZSMS1tluUlxdFvhaCJoPD+/bFv57cDYiHIeR983G+3z+3m+bxfh/N637w4T9+fK4cxxggAAMAiPp5uAAAAoDoCCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdfw83cD5qKqq0pdffqnQ0FA5HA5PtwMAAH4AY4yOHz+umJgY+fice43EKwPKl19+qdjYWE+3AQAAzsPhw4fVtm3bc9Z4ZUAJDQ2V9J8JhoWFebgbAADwQ5SWlio2Ntb1PX4uXhlQvjusExYWRkABAMDL/JDTMzhJFgAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdP0830NjaT3mzUT/vwNM3N+rnAQDQFLCCAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOhfdVTxNGVcoAQCaClZQAACAdVhBgVdgdQgALi6soAAAAOsQUAAAgHU4xAN4GIevAKAmVlAAAIB1CCgAAMA6BBQAAGAdzkEBcEE15jk2jX1+TVOeG+BpBBQAQA1NOXw15bk1JRziAQAA1qlzQPniiy909913q2XLlgoODtY111yjgoIC17gxRunp6YqJiVFQUJB69+6t3bt3u/2M8vJyjRs3Tq1atVJISIgGDRqkwsLC+s8GAAA0CXUKKMXFxbr++uvVrFkzvfXWW/r444/1zDPPqEWLFq6aGTNmaObMmZo9e7a2bt2q6Ohopaam6vjx466atLQ0LV++XLm5udq0aZNOnDihAQMGqLKyssEmBgAAvFedzkH54x//qNjYWC1cuNC1r3379q5fG2OUlZWladOmafDgwZKkRYsWKSoqSkuXLtUDDzygkpISzZ8/Xy+++KJSUlIkSUuWLFFsbKxWr16tfv361fjc8vJylZeXu16XlpbWaZIAAMC71GkF5bXXXlP37t11xx13qE2bNrr22mv1/PPPu8b3798vp9Opvn37uvYFBAQoMTFR+fn5kqSCggKdPn3arSYmJkYJCQmumuoyMzMVHh7u2mJjY+s0SQAA4F3qFFD27dunuXPnKj4+Xm+//bYefPBBjR8/XosXL5YkOZ1OSVJUVJTb+6KiolxjTqdT/v7+ioiIqLWmuqlTp6qkpMS1HT58uC5tAwAAL1OnQzxVVVXq3r27MjIyJEnXXnutdu/erblz5+ree+911TkcDrf3GWNq7KvuXDUBAQEKCAioS6sAAMCL1WkF5ZJLLtGVV17ptu+KK67QoUOHJEnR0dGSVGMl5OjRo65VlejoaFVUVKi4uLjWGgAAcHGrU0C5/vrr9cknn7jt+/TTT3XppZdKkuLi4hQdHa28vDzXeEVFhdavX69evXpJkrp166ZmzZq51RQVFWnXrl2uGgAAcHGr0yGeRx55RL169VJGRoaGDBmiLVu2aN68eZo3b56k/xzaSUtLU0ZGhuLj4xUfH6+MjAwFBwdr6NChkqTw8HCNHDlSEyZMUMuWLRUZGamJEyeqS5curqt6AADAxa1OAeW6667T8uXLNXXqVD355JOKi4tTVlaWhg0b5qqZPHmyysrKNGbMGBUXF6tHjx5atWqVQkNDXTWzZs2Sn5+fhgwZorKyMiUnJysnJ0e+vr4NNzMAAOC16vwsngEDBmjAgAG1jjscDqWnpys9Pb3WmsDAQGVnZys7O7uuHw8AAC4CPIsHAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWMfP0w0AAICG0X7Km436eQeevvmC/WxWUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDp1Cijp6elyOBxuW3R0tGvcGKP09HTFxMQoKChIvXv31u7du91+Rnl5ucaNG6dWrVopJCREgwYNUmFhYcPMBgAANAl1XkG56qqrVFRU5No++ugj19iMGTM0c+ZMzZ49W1u3blV0dLRSU1N1/PhxV01aWpqWL1+u3Nxcbdq0SSdOnNCAAQNUWVnZMDMCAABez6/Ob/Dzc1s1+Y4xRllZWZo2bZoGDx4sSVq0aJGioqK0dOlSPfDAAyopKdH8+fP14osvKiUlRZK0ZMkSxcbGavXq1erXr99ZP7O8vFzl5eWu16WlpXVtGwAAeJE6r6Ds3btXMTExiouL05133ql9+/ZJkvbv3y+n06m+ffu6agMCApSYmKj8/HxJUkFBgU6fPu1WExMTo4SEBFfN2WRmZio8PNy1xcbG1rVtAADgReoUUHr06KHFixfr7bff1vPPPy+n06levXrp66+/ltPplCRFRUW5vScqKso15nQ65e/vr4iIiFprzmbq1KkqKSlxbYcPH65L2wAAwMvU6RBP//79Xb/u0qWLevbsqcsuu0yLFi3ST3/6U0mSw+Fwe48xpsa+6r6vJiAgQAEBAXVpFQAAeLF6XWYcEhKiLl26aO/eva7zUqqvhBw9etS1qhIdHa2KigoVFxfXWgMAAFCvgFJeXq5///vfuuSSSxQXF6fo6Gjl5eW5xisqKrR+/Xr16tVLktStWzc1a9bMraaoqEi7du1y1QAAANTpEM/EiRM1cOBAtWvXTkePHtUf/vAHlZaWavjw4XI4HEpLS1NGRobi4+MVHx+vjIwMBQcHa+jQoZKk8PBwjRw5UhMmTFDLli0VGRmpiRMnqkuXLq6regAAAOoUUAoLC3XXXXfpq6++UuvWrfXTn/5U7733ni699FJJ0uTJk1VWVqYxY8aouLhYPXr00KpVqxQaGur6GbNmzZKfn5+GDBmisrIyJScnKycnR76+vg07MwAA4LXqFFByc3PPOe5wOJSenq709PRaawIDA5Wdna3s7Oy6fDQAALiI8CweAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArFOvgJKZmSmHw6G0tDTXPmOM0tPTFRMTo6CgIPXu3Vu7d+92e195ebnGjRunVq1aKSQkRIMGDVJhYWF9WgEAAE3IeQeUrVu3at68ebr66qvd9s+YMUMzZ87U7NmztXXrVkVHRys1NVXHjx931aSlpWn58uXKzc3Vpk2bdOLECQ0YMECVlZXnPxMAANBknFdAOXHihIYNG6bnn39eERERrv3GGGVlZWnatGkaPHiwEhIStGjRIp08eVJLly6VJJWUlGj+/Pl65plnlJKSomuvvVZLlizRRx99pNWrVzfMrAAAgFc7r4Dy0EMP6eabb1ZKSorb/v3798vpdKpv376ufQEBAUpMTFR+fr4kqaCgQKdPn3ariYmJUUJCgqumuvLycpWWlrptAACg6fKr6xtyc3O1fft2bd26tcaY0+mUJEVFRbntj4qK0sGDB101/v7+bisv39V89/7qMjMz9cQTT9S1VQAA4KXqtIJy+PBhPfzww1qyZIkCAwNrrXM4HG6vjTE19lV3rpqpU6eqpKTEtR0+fLgubQMAAC9Tp4BSUFCgo0ePqlu3bvLz85Ofn5/Wr1+v5557Tn5+fq6Vk+orIUePHnWNRUdHq6KiQsXFxbXWVBcQEKCwsDC3DQAANF11CijJycn66KOPtGPHDtfWvXt3DRs2TDt27FCHDh0UHR2tvLw813sqKiq0fv169erVS5LUrVs3NWvWzK2mqKhIu3btctUAAICLW53OQQkNDVVCQoLbvpCQELVs2dK1Py0tTRkZGYqPj1d8fLwyMjIUHBysoUOHSpLCw8M1cuRITZgwQS1btlRkZKQmTpyoLl261DjpFgAAXJzqfJLs95k8ebLKyso0ZswYFRcXq0ePHlq1apVCQ0NdNbNmzZKfn5+GDBmisrIyJScnKycnR76+vg3dDgAA8EL1Dijr1q1ze+1wOJSenq709PRa3xMYGKjs7GxlZ2fX9+MBAEATxLN4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsE6dAsrcuXN19dVXKywsTGFhYerZs6feeust17gxRunp6YqJiVFQUJB69+6t3bt3u/2M8vJyjRs3Tq1atVJISIgGDRqkwsLChpkNAABoEuoUUNq2baunn35a27Zt07Zt29SnTx/dcsstrhAyY8YMzZw5U7Nnz9bWrVsVHR2t1NRUHT9+3PUz0tLStHz5cuXm5mrTpk06ceKEBgwYoMrKyoadGQAA8Fp1CigDBw7UTTfdpE6dOqlTp06aPn26mjdvrvfee0/GGGVlZWnatGkaPHiwEhIStGjRIp08eVJLly6VJJWUlGj+/Pl65plnlJKSomuvvVZLlizRRx99pNWrV1+QCQIAAO9z3uegVFZWKjc3V99++6169uyp/fv3y+l0qm/fvq6agIAAJSYmKj8/X5JUUFCg06dPu9XExMQoISHBVXM25eXlKi0tddsAAEDTVeeA8tFHH6l58+YKCAjQgw8+qOXLl+vKK6+U0+mUJEVFRbnVR0VFucacTqf8/f0VERFRa83ZZGZmKjw83LXFxsbWtW0AAOBF6hxQOnfurB07dui9997T6NGjNXz4cH388ceucYfD4VZvjKmxr7rvq5k6dapKSkpc2+HDh+vaNgAA8CJ1Dij+/v7q2LGjunfvrszMTHXt2lXPPvusoqOjJanGSsjRo0ddqyrR0dGqqKhQcXFxrTVnExAQ4Lpy6LsNAAA0XfW+D4oxRuXl5YqLi1N0dLTy8vJcYxUVFVq/fr169eolSerWrZuaNWvmVlNUVKRdu3a5agAAAPzqUvzb3/5W/fv3V2xsrI4fP67c3FytW7dOK1eulMPhUFpamjIyMhQfH6/4+HhlZGQoODhYQ4cOlSSFh4dr5MiRmjBhglq2bKnIyEhNnDhRXbp0UUpKygWZIAAA8D51CihHjhzRPffco6KiIoWHh+vqq6/WypUrlZqaKkmaPHmyysrKNGbMGBUXF6tHjx5atWqVQkNDXT9j1qxZ8vPz05AhQ1RWVqbk5GTl5OTI19e3YWcGAAC8Vp0Cyvz588857nA4lJ6ervT09FprAgMDlZ2drezs7Lp8NAAAuIjwLB4AAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsU6eAkpmZqeuuu06hoaFq06aNbr31Vn3yySduNcYYpaenKyYmRkFBQerdu7d2797tVlNeXq5x48apVatWCgkJ0aBBg1RYWFj/2QAAgCahTgFl/fr1euihh/Tee+8pLy9PZ86cUd++ffXtt9+6ambMmKGZM2dq9uzZ2rp1q6Kjo5Wamqrjx4+7atLS0rR8+XLl5uZq06ZNOnHihAYMGKDKysqGmxkAAPBafnUpXrlypdvrhQsXqk2bNiooKNDPf/5zGWOUlZWladOmafDgwZKkRYsWKSoqSkuXLtUDDzygkpISzZ8/Xy+++KJSUlIkSUuWLFFsbKxWr16tfv36NdDUAACAt6rXOSglJSWSpMjISEnS/v375XQ61bdvX1dNQECAEhMTlZ+fL0kqKCjQ6dOn3WpiYmKUkJDgqqmuvLxcpaWlbhsAAGi6zjugGGP06KOP6oYbblBCQoIkyel0SpKioqLcaqOiolxjTqdT/v7+ioiIqLWmuszMTIWHh7u22NjY820bAAB4gfMOKGPHjtWHH36oZcuW1RhzOBxur40xNfZVd66aqVOnqqSkxLUdPnz4fNsGAABe4LwCyrhx4/Taa69p7dq1atu2rWt/dHS0JNVYCTl69KhrVSU6OloVFRUqLi6utaa6gIAAhYWFuW0AAKDpqlNAMcZo7NixevXVV/XOO+8oLi7ObTwuLk7R0dHKy8tz7auoqND69evVq1cvSVK3bt3UrFkzt5qioiLt2rXLVQMAAC5udbqK56GHHtLSpUu1YsUKhYaGulZKwsPDFRQUJIfDobS0NGVkZCg+Pl7x8fHKyMhQcHCwhg4d6qodOXKkJkyYoJYtWyoyMlITJ05Uly5dXFf1AACAi1udAsrcuXMlSb1793bbv3DhQt13332SpMmTJ6usrExjxoxRcXGxevTooVWrVik0NNRVP2vWLPn5+WnIkCEqKytTcnKycnJy5OvrW7/ZAACAJqFOAcUY8701DodD6enpSk9Pr7UmMDBQ2dnZys7OrsvHAwCAiwTP4gEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6dQ4oGzZs0MCBAxUTEyOHw6F//etfbuPGGKWnpysmJkZBQUHq3bu3du/e7VZTXl6ucePGqVWrVgoJCdGgQYNUWFhYr4kAAICmo84B5dtvv1XXrl01e/bss47PmDFDM2fO1OzZs7V161ZFR0crNTVVx48fd9WkpaVp+fLlys3N1aZNm3TixAkNGDBAlZWV5z8TAADQZPjV9Q39+/dX//79zzpmjFFWVpamTZumwYMHS5IWLVqkqKgoLV26VA888IBKSko0f/58vfjii0pJSZEkLVmyRLGxsVq9erX69etXj+kAAICmoEHPQdm/f7+cTqf69u3r2hcQEKDExETl5+dLkgoKCnT69Gm3mpiYGCUkJLhqqisvL1dpaanbBgAAmq4GDShOp1OSFBUV5bY/KirKNeZ0OuXv76+IiIhaa6rLzMxUeHi4a4uNjW3ItgEAgGUuyFU8DofD7bUxpsa+6s5VM3XqVJWUlLi2w4cPN1ivAADAPg0aUKKjoyWpxkrI0aNHXasq0dHRqqioUHFxca011QUEBCgsLMxtAwAATVeDBpS4uDhFR0crLy/Pta+iokLr169Xr169JEndunVTs2bN3GqKioq0a9cuVw0AALi41fkqnhMnTuizzz5zvd6/f7927NihyMhItWvXTmlpacrIyFB8fLzi4+OVkZGh4OBgDR06VJIUHh6ukSNHasKECWrZsqUiIyM1ceJEdenSxXVVDwAAuLjVOaBs27ZNSUlJrtePPvqoJGn48OHKycnR5MmTVVZWpjFjxqi4uFg9evTQqlWrFBoa6nrPrFmz5OfnpyFDhqisrEzJycnKycmRr69vA0wJAAB4uzoHlN69e8sYU+u4w+FQenq60tPTa60JDAxUdna2srOz6/rxAADgIsCzeAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALCORwPKnDlzFBcXp8DAQHXr1k0bN270ZDsAAMASHgsof//735WWlqZp06bpgw8+0M9+9jP1799fhw4d8lRLAADAEh4LKDNnztTIkSM1atQoXXHFFcrKylJsbKzmzp3rqZYAAIAl/DzxoRUVFSooKNCUKVPc9vft21f5+fk16svLy1VeXu56XVJSIkkqLS2t82dXlZ+s83vq43x6PF/MreEwt4bTmPNjbg2HuTWMpjw3qe7z+67eGPP9xcYDvvjiCyPJbN682W3/9OnTTadOnWrUP/7440YSGxsbGxsbWxPYDh8+/L1ZwSMrKN9xOBxur40xNfZJ0tSpU/Xoo4+6XldVVembb75Ry5Ytz1rf0EpLSxUbG6vDhw8rLCzsgn9eY2Ju3om5eaemPDepac+PuTUMY4yOHz+umJiY7631SEBp1aqVfH195XQ63fYfPXpUUVFRNeoDAgIUEBDgtq9FixYXssWzCgsLa3J/ML/D3LwTc/NOTXluUtOeH3Orv/Dw8B9U55GTZP39/dWtWzfl5eW57c/Ly1OvXr080RIAALCIxw7xPProo7rnnnvUvXt39ezZU/PmzdOhQ4f04IMPeqolAABgCY8FlF/+8pf6+uuv9eSTT6qoqEgJCQn6n//5H1166aWeaqlWAQEBevzxx2scZmoKmJt3Ym7eqSnPTWra82Nujc9hzA+51gcAAKDx8CweAABgHQIKAACwDgEFAABYh4ACAACsQ0C5SBw6dOiHPfsAAAALcBVPNRMmTFBmZqb8/f093UqD8vX1VVFRkdq0aePpVhrcoUOHflBdu3btLnAnDW/Dhg0/qO7nP//5Be4EABoXAaWaDh06KCgoSEuWLNG1117r6XYajI+Pj5xOZ5MMKD4+Pmd9JtN/P9vJ4XDozJkzjd1avf333Gr7q+pwOFRZWdmYbTWoXbt2KSEh4Zw1Tz/9dI2nn3uLqqoq5eTk6NVXX9WBAwfkcDgUFxen22+/Xffcc0+jPE8MDe+f//ynbr/9dk+3UWdXXnmlNm3apMjISEnSr3/9a02fPl2tW7eW9J9HzrRv314nTzbuU5HPhkM81ezatUu9e/dWz5499dRTT6mqqsrTLeF7fPDBB9q+fftZt0mTJikgIMD1l9HbREREKDY2Vr///e+1d+9eFRcX19i++eYbT7dZL/369dOBAwdqHf/jH/+oxx9/vPEaakDGGA0aNEijRo3SF198oS5duuiqq67SwYMHdd999+kXv/iFp1s8b0VFRZo2bZrr9Q033KAf//jHru26667TF1984cEO6+fMmTPavXu3Pv30U7f9K1asUNeuXTVs2DAPdVY/e/bscfvPWm5uro4fP+56bYzRqVOnPNFaDR59mrGNgoOD9Ze//EW33367Ro4cqTfeeENTpkyRr6+vW92gQYM81OH5e+GFF9S8efNz1owfP76Rumk4Xbt2rbFv9erVmjJlij799FNNnjxZEydO9EBn9VdUVKTly5drwYIFmjFjhm666SaNHDlSN954Y5P5n/fPfvYzpaamavPmzTVW+P70pz/p97//vV566SUPdVc/OTk52rBhg9asWaOkpCS3sXfeeUe33nqrFi9erHvvvddDHZ6/OXPm6NixY67XO3fu1IgRI1z/GXjrrbc0a9Ys/fnPf/ZQh+fv448/1oABA3Tw4EFJ0i233KK5c+dqyJAh2rlzp0aNGqU33njDw102jLOtzFrzb4tBrf71r38ZX19f43A43DYfHx9Pt1ZnDofDxMbGmvbt29e6xcXFebrNetu2bZtJSUkxAQEB5qGHHjJHjhzxdEsN5tChQ+aJJ54wHTp0MD/60Y/Mb3/7W3P69GlPt1Vvp0+fNjfeeKPp2rWrOXbsmGv/n//8Z+Pn52eWLVvmwe7qJzU11WRmZtY6Pn36dNO3b99G7KjhdO3a1axatcr1unnz5ubzzz93vV65cqW58sorPdFavQ0cOND06dPHvP766+bOO+80DofDxMfHmyeeeMKUlpZ6ur16cTgcbv8uVv99czqd1nzHEVDO4uTJk2bcuHEmICDApKenN4kvgep/KJuavXv3miFDhhhfX19z1113uf2Fa2r27dtnkpKSjI+Pj/n666893U6DOHnypLn++uvNDTfcYMrKysysWbOMn5+feemllzzdWr1ERUWZDz74oNbx7du3m6ioqMZrqAGFh4e7/T37xS9+YZxOp+v1/v37TVBQkCdaq7eoqChTUFBgjDGmuLjYOBwOM2/ePA931TB8fHzM0aNHXa+bN29u9u3b53ptU0DhEE81+fn5Gj58uAICArR582Z169bN0y01CGuW7C6AMWPGaP78+UpKStK2bdt0zTXXeLqlBldeXq5XXnlFCxYs0Lvvvqubb75Zb775pteeW1NdUFCQ3nzzTSUmJqpbt2769NNPtXDhQg0dOtTTrdXLN998o6ioqFrHo6KiVFxc3IgdNZwzZ86opKTE9frVV191Gy8uLpaPj3ee5nj06FH96Ec/kiS1aNFCwcHBSkxM9HBXDcMYo+TkZPn5/efrv6ysTAMHDnRduWrTxQQElGp69+6t8ePHa/r06dY92bE+TBO+WOuvf/2rAgMDdfToUY0YMaLWuu3btzdiVw1jy5YtWrhwoXJzcxUXF6f77rtP//jHP5pMMJGk1157zfXr0aNH6+GHH9YvfvELhYWFuY1543lflZWVri+Cs/H19bXqC6EuOnfurPz8/Fqvdty4caM6derUyF01DIfD4RaufHx81KxZMw921HCqn3B+yy231Ki57bbbGqudc+Iy42o2bNjQJO8p8cQTT2jSpEkKDg72dCsN7oknnvhBdd54JYiPj4/atWun4cOHn3M1zxu/vL/zQ/6X7a2XUvv4+Kh///61/menvLxcK1eu9Mq5/elPf9LTTz+ttWvX6uqrr3Yb27lzp/r06aMpU6Zo0qRJHurw/Pn4+Cg8PNy18nzs2DGFhYXV+LPq7VfQ2Y6AUs1jjz2mxx57rNb/9Rw6dEgjR45UXl5eI3dWP035ZmZNWVP+8r4Y/OpXv/pBdQsXLrzAnTS806dPKyUlRfn5+UpNTVXnzp3lcDi0Z88e5eXlqWfPnlqzZo1XrjwsWrToB9UNHz78AnfS+E6dOqXZs2dbceUjAaWadu3aqWXLllq8eLG6dOniNjZv3jxNnDhR119/vd566y0PdXh+/vsy6e9+y//7vBTzfzc188Yvuo8//lhXXnnlOWuWLFmiu+++u5E6Ai4OFRUVmjlzpnJzc133C4mPj9ddd92lRx55pEkdJm9KvvrqK73//vtq1qyZkpOT5evrq9OnT2vOnDnKzMzUmTNn9NVXX3m6TQJKdaWlpRo7dqz+8Y9/6PHHH9dvfvMbFRYWasSIEdq2bZv+/Oc/a9SoUZ5us878/PzUtm1b3XfffRo4cGCtK0Rnu6eI7YKCgvTUU09pwoQJNU4GPnLkiO6//36tXbvW7WZEsM/LL7+sZcuW6dNPP5XD4VB8fLyGDh3qlXfrhHe7++671adPH/Xu3VsdOnTwdDsNKj8/XzfffLNKSkrkcDjUvXt3LVy4ULfeequqqqqUlpamESNGWHE6AAGlFitWrNADDzyg6Oho7d+/Xz179tTzzz+v2NhYT7d2XpxOpxYtWqScnBwVFxfr7rvv1siRI3XFFVd4urV6e+WVVzR69Gh17txZOTk5uuyyyyT9Z9Xk4YcfVkJCghYsWODa700WL1581v3h4eHq3LmzLr/88kbuqOFVVVXprrvu0ssvv6xOnTrp8ssvlzFGe/bs0WeffaY77rhDy5Yta9JXonmj4uJiLVmyRMOHD1dYWJjbWElJiRYvXnzWMW+QnJys9957T6dOnVLbtm2VlJSkPn36KCkpyWu/A76TnJys1q1b63e/+50WLFigrKwstW/fXunp6fY9esEDlzZ7haKiIpOSkmIcDodp3ry5WbNmjadbajAbN240I0aMMKGhoaZHjx5m3rx5prKy0tNt1cuRI0fMrbfeakJCQsyf/vQnM2jQIBMcHGyysrJMVVWVp9s7by1atDjr5ufnZ3x8fMyAAQO8/sZRzzzzjImMjDSvv/56jbEVK1aYyMhIM2vWrMZvDOf05JNPmttvv73W8TvuuMP84Q9/aMSOGlZFRYXZsGGDefLJJ02fPn1McHCw8fHxMZdddpkZNWqUWbp0qadbPC8tW7Y0u3btMsYY8+233xofHx/zj3/8w8NdnR0B5SyWLl1qIiMjTZ8+fcyePXvMpEmTjL+/vxk/frw5efKkp9trME6ns8nd8Gvo0KGuUPnhhx96up0LprKy0mzZssVcffXVZsKECZ5up166dOli5s+fX+v4Cy+8YBISEhqxI/wQXbt2NatXr651fPXq1eaaa65pxI4urPLycrN+/XozefJkExYWZs3NzOrqbHeS3bt3rwc7qh0BpZrbbrvNNG/e3Dz33HNu+/Pz802nTp1MfHy8yc/P91B3DWPz5s1m5MiRJiwszFx33XVm7ty5Xr+C8s0335i77rrLBAcHm6lTp5oOHTqYK664wmzZssXTrV1QeXl5plOnTp5uo14CAwPNwYMHax0/cOCACQwMbMSO8EM0b978nL9vBw8eNKGhoY3Y0YVRVlZmVq9ebX73u9+Z66+/3vj7+5v4+HgzatQoT7d2Xnx8fMxnn31mSkpKzLFjx0xoaKjZuXOnKSkpcdtswI3aqikqKtIHH3ygjh07SvrP2c4Oh0M9e/bUzp079Zvf/EaJiYmqqKjwcKd1U1RUpMWLF2vhwoUqLi7WsGHDlJ+fr6uuusrTrdXbG2+8ofvvv1/t2rVTQUGBLr/8ck2bNk0TJ07UDTfcoEmTJik9Pf2cN8zyVh07dlRhYaGn26iXoKAgHTt2rNZL3EtLSxUUFNTIXeH7+Pr66ssvv6z19+3LL7/02jvJrl271rVt3bpVHTp0UGJiosaOHavExERdcsklnm7xvBlj3G6gZ4xxu9meseiKTk6SraaqqkqlpaWaNm2a/v73v7tuQx0REaE777xTf/jDH/Thhx963c3c/P39FRMTo+HDh2vQoEG13pug+g2XvEFgYKAee+wxTZkypcY/iHl5eRo1apQiIiK0Y8cOzzR4Aa1Zs0ZjxozRJ5984ulWztvNN9+sdu3aae7cuWcdf/DBB3X48GG9+eabjdwZziUpKUk9evTQ008/fdbx3/zmN9qyZYvWrl3byJ3V33c3SJwyZYpuu+02tW7d2tMtNZj169f/oDorbu3v0fUbC3399demU6dOJiQkxPz61782s2bNMjNnzjT333+/CQkJMZdffrn55ptvPN1mnVV/GrOPj0+TeEqzMcbs3LnznOMlJSVmxIgRjdRN46iqqjIFBQWma9euXn8OyubNm02zZs3MHXfcYd5//33X0vO7775rbr/9dtOsWTOzadMmT7eJav75z38aPz8/k52dbc6cOePaf+bMGfPcc8+ZZs2amZdfftmDHZ6/yZMnmx49ehh/f3/TpUsXM3bsWPPPf/7T7SF7uPBYQakmLS1Na9as0erVq2s85MvpdKpv375KTk7WrFmzPNTh+Tl48OD31hQXF3vlg/ZGjBihZ599VqGhoZ5upcFFRESc9bK/EydOqLKyUjfeeKP+/ve/q3nz5h7oruEsX75cv/71r2vcOjwiIkJ/+9vfrHk2CNxNmzZNmZmZCg0NVYcOHeRwOPT555/rxIkTmjRpUq2rK97ixIkT2rhxo9atW6d169bpgw8+UKdOnZSYmKikpKQmc48eY4zWrl2rsrIy9erVSxEREZ5uSRKHeGpo3769/va3v6lfv35nHV+5cqUefPBBHThwoHEbu0BKSkr00ksvaf78+dqxY4cVxx3rytfXV0VFRWrTpo2nW2lwTz311FmP8YeFhenyyy9vEvex+c7Jkyf19ttva+/evZKkTp06qW/fvgoODtYXX3zheros7LJ161a99NJL2rt3r+v8hqFDh+onP/mJp1trcN98841mzpyp7Oxs138SvM2xY8f08MMPa/v27frpT3+qZ555RjfddJPy8/MlSa1bt1ZeXp4Vh/sJKNUEBATo888/V9u2bc86XlhYqI4dO+rUqVON3FnDeuedd7RgwQK9+uqruvTSS3Xbbbfptttuq/XJpDbz8fGR0+lskgGlRYsWys7O1j333OPpVjzC6XRq+vTpeuGFF1RWVubpdvBfTp48qUmTJulf//qXTp8+reTkZGVnZ6tVq1aebq3BVFVVaevWra4VlM2bN+vEiRNq166dkpKSvPIZSqNGjdKGDRt077336o033pCPj4+MMcrKypKPj48mT56s5s2b6/XXX/d0q5yDUl1MTIzZuHFjreMbNmwwMTExjdhRwzl8+LB56qmnTFxcnGnTpo0ZO3as8fPzM7t37/Z0a/XicDia7LHhv/zlLyY0NNQMHjzYfPXVV55u54IoLi42Q4cONa1atTKXXHKJefbZZ01lZaX5/e9/b4KCgkz37t299qZYTdnEiRNNcHCwuf/++8348eNNq1atznnjNm8yY8YM079/fxMWFmYcDodp27atufvuu838+fPNvn37PN1evcTExJh169YZY4wpLCw0DofDrF271jX+/vvvm6ioKA91546AUs2IESPMz3/+c1NeXl5j7NSpUyYxMdErT7js37+/CQ0NNXfddZd54403XCe1NZWA0qJFCxMREXHOzVvt27fPJCUlmaioKLNixQpPt9PgRo8ebdq2bWsmTJhgrrrqKuPj42P69+9vkpKSXP+Qwj4dOnQwy5Ytc71+//33jZ+fn9sJs97qkksuMUOHDjXPP/+8+eyzzzzdToPy9fU1X375pet1UFCQ2xyLioqsuWCCQzzVFBYWqnv37goICNBDDz3ketbJxx9/rDlz5qi8vFzbtm3zuucx+Pn5afz48Ro9erTi4+Nd+5s1a6adO3d+79OAbebj46OsrCyFh4efs87bH40+e/ZsPfLII7riiitq3NNl+/btHuqq/i699FLNnz9fKSkp2rdvnzp27Kjx48crKyvL063hHPz9/bV//363c4OCgoL06aefet2/j9WdPHlSEydO1IoVK3T69GmlpKToueeeaxKHr6ofEg8NDdXOnTtdD0U8cuSIYmJirDi/punduaqe2rZtq3fffVdjxozR1KlT9V1+czgcSk1N1ezZs73yL9/GjRu1YMECde/eXZdffrnuuece/fKXv/R0Ww3mzjvvbJLnoHzn4MGDeuWVVxQZGalbbrmlSd107ssvv3QF5A4dOigwMNArnxh+samsrJS/v7/bPj8/P505c8ZDHTWc9PR0LVq0SMOGDVNgYKCWLVum0aNH6+WXX/Z0aw3ihRdecF35d+bMGeXk5LjCl01PfWcF5RyKi4tdVxR07NhRkZGRHu6o/k6ePKnc3FwtWLBAW7ZsUWVlpWbOnKkRI0Z47WW6TfkqHkl6/vnnNWHCBKWkpOhvf/tbk7pplPSf3z+n0+maV2hoqD788EPFxcV5uDOci4+Pj/r376+AgADXvtdff119+vRRSEiIa9+rr77qifbq5bLLLtP06dN15513SpK2bNmi66+/XqdOnZKvr6+Hu6uf9u3b/6AnFu/fv78Rujk3AspF7JNPPtH8+fP14osv6tixY0pNTdVrr73m6bbqrClfxXPjjTdqy5YtysrK0r333uvpdi6I6l90Z/uSk7zzi64p+9WvfvWD6rzxSpemfPjKmxBQoMrKSr3++utasGCBVwaUpiw1NVULFy6s9bL3pqApf9HBO1Vf1ZOazsreO++8o7Fjx+q9995TWFiY21hJSYl69eqlv/71r/rZz37moQ7/PwIKAAD/pSkfvho0aJCSkpL0yCOPnHX8ueee09q1a7V8+fJG7qwmAgoAAP+lKa/qXXrppVq5cmWtd6Hes2eP+vbtq0OHDjVyZzU1nUsBAABoAN4YPH6oI0eO1Po0e+k/V2L97//+byN2VDuf7y8BAABNwY9+9CN99NFHtY5/+OGHuuSSSxqxo9oRUAAAuEjcdNNNeuyxx876PLmysjI9/vjjGjBggAc6q4lzUAAAuEgcOXJEP/7xj+Xr66uxY8eqc+fOcjgc+ve//62//OUvqqys1Pbt2xUVFeXpVgkoAABcTA4ePKjRo0fr7bffdrtber9+/TRnzhy1b9/esw3+HwIKAAAXoeLiYn322Wcyxig+Pl4RERGebskNAQUAAFiHk2QBAIB1CCgAAMA6BBQAAGAdAgoAALAOAQXABbNu3To5HA4dO3bsB9X37t1baWlpF7QnAN6BgAKgwVQPGL169VJRUZHCw8M91xQAr0RAAXDB+Pv7Kzo6Wg6HwyOfX1FR4ZHPBVB/BBQADeK+++7T+vXr9eyzz8rhcMjhcCgnJ6fGIZ7NmzcrMTFRwcHBioiIUL9+/VRcXHzWn7ly5UqFh4dr8eLFkqQvvvhCv/zlLxUREaGWLVvqlltu0YEDB9x6uPXWW5WZmamYmBh16tTpQk4ZwAVEQAHQIJ599ln17NlT999/v4qKilRUVKTY2Fi3mh07dig5OVlXXXWV3n33XW3atEkDBw5UZWVljZ+Xm5urIUOGaPHixbr33nt18uRJJSUlqXnz5tqwYYM2bdqk5s2b68Ybb3RbKVmzZo3+/e9/Ky8vT2+88cYFnzeAC8PP0w0AaBrCw8Pl7++v4OBgRUdHS5L27NnjVjNjxgx1795dc+bMce276qqravysOXPm6Le//a1WrFihpKQkSf8JLD4+PnrhhRdch4wWLlyoFi1aaN26derbt68kKSQkRC+88IL8/f0vyDwBNA4CCoBGs2PHDt1xxx3nrHnllVd05MgRbdq0ST/5yU9c+wsKCvTZZ58pNDTUrf7UqVP6/PPPXa+7dOlCOAGaAAIKgEYTFBT0vTXXXHONtm/froULF+q6665zrZZUVVWpW7dueumll2q8p3Xr1q5fh4SENFzDADyGc1AANBh/f/+znk/ynauvvlpr1qw558+47LLLtHbtWq1YsULjxo1z7f/xj3+svXv3qk2bNurYsaPbxmXMQNNDQAHQYNq3b6/3339fBw4c0FdffaWqqiq38alTp2rr1q0aM2aMPvzwQ+3Zs0dz587VV1995VbXqVMnrV27Vq+88orrvirDhg1Tq1atdMstt2jjxo3av3+/1q9fr4cffliFhYWNNUUAjYSAAqDBTJw4Ub6+vrryyivVunVrHTp0yG28U6dOWrVqlXbu3Kmf/OQn6tmzp1asWCE/v5pHmzt37qx33nlHy5Yt04QJExQcHKwNGzaoXbt2Gjx4sK644gqNGDFCZWVlCgsLa6wpAmgkDmOM8XQTAAAA/40VFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABY5/8B3PPyjHNXC/8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "simple_sample_dt['ticker'].value_counts().plot(kind='bar')" ] @@ -138,9 +400,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHICAYAAABkoRGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1p0lEQVR4nO3deXiU1f3//9dkX0hCwpKYEiRIwCWIFiwFbUPIgiigRaUKKhawCgJGWQrlU41aEksrREOhRVlFSGuV4vIRCcgeFQiCgkVRds3ARw0JSEggOb8/+nV+DCFISMicCc/Hdd3XxX2f98y8jyB5ceZeHMYYIwAAAIv4eLoBAACAMxFQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACs4+fpBi5EVVWVvv76a4WFhcnhcHi6HQAAcB6MMTp69KhiY2Pl43PuNRKvDChff/214uLiPN0GAAC4AAcOHFCrVq3OWeOVASUsLEzSfycYHh7u4W4AAMD5KC0tVVxcnOvn+Ll4ZUD54Wud8PBwAgoAAF7mfE7P4CRZAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHX8PN1AQ2sz4e0G/by9z97aYJ/F3OoPc6s/DTk/5lZ/mFv9aOi5NSasoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA69Q6oHz11Ve699571axZM4WEhOi6665TYWGha9wYo8zMTMXGxio4OFg9evTQjh073N6jvLxco0aNUvPmzRUaGqp+/frp4MGDdZ8NAABoFGoVUIqLi3XjjTfK399f77zzjj799FM999xzatq0qatmypQpmjp1qqZPn65NmzYpJiZGaWlpOnr0qKsmIyNDS5YsUV5entavX69jx46pT58+qqysrLeJAQAA71WrZ/H86U9/UlxcnObOnes61qZNG9evjTHKycnRpEmT1L9/f0nS/PnzFR0drUWLFumhhx5SSUmJZs+erZdfflmpqamSpIULFyouLk4rVqxQr169qn1ueXm5ysvLXfulpaW1miQAAPAutVpBeeONN9SlSxfdddddatmypa6//nq9+OKLrvE9e/bI6XQqPT3ddSwwMFBJSUkqKCiQJBUWFurkyZNuNbGxsUpMTHTVnCk7O1sRERGuLS4urlaTBAAA3qVWAWX37t2aOXOmEhIS9O677+rhhx/W6NGjtWDBAkmS0+mUJEVHR7u9Ljo62jXmdDoVEBCgyMjIGmvONHHiRJWUlLi2AwcO1KZtAADgZWr1FU9VVZW6dOmirKwsSdL111+vHTt2aObMmbr//vtddQ6Hw+11xphqx850rprAwEAFBgbWplUAAODFarWCctlll+nqq692O3bVVVdp//79kqSYmBhJqrYScvjwYdeqSkxMjCoqKlRcXFxjDQAAuLTVKqDceOON+uyzz9yOff7557r88sslSfHx8YqJiVF+fr5rvKKiQmvWrFH37t0lSZ07d5a/v79bTVFRkbZv3+6qAQAAl7ZafcXz2GOPqXv37srKytKAAQO0ceNGzZo1S7NmzZL03692MjIylJWVpYSEBCUkJCgrK0shISEaOHCgJCkiIkJDhw7VmDFj1KxZM0VFRWns2LHq2LGj66oeAABwaatVQLnhhhu0ZMkSTZw4UU8//bTi4+OVk5OjQYMGuWrGjx+vsrIyjRgxQsXFxeratauWL1+usLAwV820adPk5+enAQMGqKysTCkpKZo3b558fX3rb2YAAMBr1SqgSFKfPn3Up0+fGscdDocyMzOVmZlZY01QUJByc3OVm5tb248HAACXAJ7FAwAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKzj5+kGAABA/Wgz4e0G/by9z9560d6bFRQAAGAdAgoAALAOAQUAAFinVgElMzNTDofDbYuJiXGNG2OUmZmp2NhYBQcHq0ePHtqxY4fbe5SXl2vUqFFq3ry5QkND1a9fPx08eLB+ZgMAABqFWq+gXHPNNSoqKnJtn3zyiWtsypQpmjp1qqZPn65NmzYpJiZGaWlpOnr0qKsmIyNDS5YsUV5entavX69jx46pT58+qqysrJ8ZAQAAr1frq3j8/PzcVk1+YIxRTk6OJk2apP79+0uS5s+fr+joaC1atEgPPfSQSkpKNHv2bL388stKTU2VJC1cuFBxcXFasWKFevXqVcfpAACAxqDWKyi7du1SbGys4uPjdffdd2v37t2SpD179sjpdCo9Pd1VGxgYqKSkJBUUFEiSCgsLdfLkSbea2NhYJSYmumrOpry8XKWlpW4bAABovGoVULp27aoFCxbo3Xff1Ysvviin06nu3bvr22+/ldPplCRFR0e7vSY6Oto15nQ6FRAQoMjIyBprziY7O1sRERGuLS4urjZtAwAAL1OrgNK7d2/dcccd6tixo1JTU/X22/+9Icz8+fNdNQ6Hw+01xphqx870YzUTJ05USUmJaztw4EBt2gYAAF6mTpcZh4aGqmPHjtq1a5frvJQzV0IOHz7sWlWJiYlRRUWFiouLa6w5m8DAQIWHh7ttAACg8apTQCkvL9d//vMfXXbZZYqPj1dMTIzy8/Nd4xUVFVqzZo26d+8uSercubP8/f3daoqKirR9+3ZXDQAAQK2u4hk7dqz69u2r1q1b6/Dhw/rjH/+o0tJSDR48WA6HQxkZGcrKylJCQoISEhKUlZWlkJAQDRw4UJIUERGhoUOHasyYMWrWrJmioqI0duxY11dGAAAAUi0DysGDB3XPPffom2++UYsWLfTzn/9cH3zwgS6//HJJ0vjx41VWVqYRI0aouLhYXbt21fLlyxUWFuZ6j2nTpsnPz08DBgxQWVmZUlJSNG/ePPn6+tbvzAAAgNeqVUDJy8s757jD4VBmZqYyMzNrrAkKClJubq5yc3Nr89EAAOASwrN4AACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWKdOASU7O1sOh0MZGRmuY8YYZWZmKjY2VsHBwerRo4d27Njh9rry8nKNGjVKzZs3V2hoqPr166eDBw/WpRUAANCIXHBA2bRpk2bNmqVrr73W7fiUKVM0depUTZ8+XZs2bVJMTIzS0tJ09OhRV01GRoaWLFmivLw8rV+/XseOHVOfPn1UWVl54TMBAACNxgUFlGPHjmnQoEF68cUXFRkZ6TpujFFOTo4mTZqk/v37KzExUfPnz9fx48e1aNEiSVJJSYlmz56t5557Tqmpqbr++uu1cOFCffLJJ1qxYkX9zAoAAHi1CwoojzzyiG699Valpqa6Hd+zZ4+cTqfS09NdxwIDA5WUlKSCggJJUmFhoU6ePOlWExsbq8TERFfNmcrLy1VaWuq2AQCAxsuvti/Iy8vTli1btGnTpmpjTqdTkhQdHe12PDo6Wvv27XPVBAQEuK28/FDzw+vPlJ2draeeeqq2rQIAAC9VqxWUAwcO6NFHH9XChQsVFBRUY53D4XDbN8ZUO3amc9VMnDhRJSUlru3AgQO1aRsAAHiZWgWUwsJCHT58WJ07d5afn5/8/Py0Zs0avfDCC/Lz83OtnJy5EnL48GHXWExMjCoqKlRcXFxjzZkCAwMVHh7utgEAgMarVgElJSVFn3zyibZu3eraunTpokGDBmnr1q1q27atYmJilJ+f73pNRUWF1qxZo+7du0uSOnfuLH9/f7eaoqIibd++3VUDAAAubbU6ByUsLEyJiYlux0JDQ9WsWTPX8YyMDGVlZSkhIUEJCQnKyspSSEiIBg4cKEmKiIjQ0KFDNWbMGDVr1kxRUVEaO3asOnbsWO2kWwAAcGmq9UmyP2b8+PEqKyvTiBEjVFxcrK5du2r58uUKCwtz1UybNk1+fn4aMGCAysrKlJKSonnz5snX17e+2wEAAF6ozgFl9erVbvsOh0OZmZnKzMys8TVBQUHKzc1Vbm5uXT8eAAA0QjyLBwAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDq1CigzZ87Utddeq/DwcIWHh6tbt2565513XOPGGGVmZio2NlbBwcHq0aOHduzY4fYe5eXlGjVqlJo3b67Q0FD169dPBw8erJ/ZAACARqFWAaVVq1Z69tlntXnzZm3evFk9e/bUbbfd5gohU6ZM0dSpUzV9+nRt2rRJMTExSktL09GjR13vkZGRoSVLligvL0/r16/XsWPH1KdPH1VWVtbvzAAAgNeqVUDp27evbrnlFrVv317t27fX5MmT1aRJE33wwQcyxignJ0eTJk1S//79lZiYqPnz5+v48eNatGiRJKmkpESzZ8/Wc889p9TUVF1//fVauHChPvnkE61YseKiTBAAAHifCz4HpbKyUnl5efr+++/VrVs37dmzR06nU+np6a6awMBAJSUlqaCgQJJUWFiokydPutXExsYqMTHRVXM25eXlKi0tddsAAEDjVeuA8sknn6hJkyYKDAzUww8/rCVLlujqq6+W0+mUJEVHR7vVR0dHu8acTqcCAgIUGRlZY83ZZGdnKyIiwrXFxcXVtm0AAOBFah1QOnTooK1bt+qDDz7Q8OHDNXjwYH366aeucYfD4VZvjKl27Ew/VjNx4kSVlJS4tgMHDtS2bQAA4EVqHVACAgLUrl07denSRdnZ2erUqZOef/55xcTESFK1lZDDhw+7VlViYmJUUVGh4uLiGmvOJjAw0HXl0A8bAABovOp8HxRjjMrLyxUfH6+YmBjl5+e7xioqKrRmzRp1795dktS5c2f5+/u71RQVFWn79u2uGgAAAL/aFP/+979X7969FRcXp6NHjyovL0+rV6/WsmXL5HA4lJGRoaysLCUkJCghIUFZWVkKCQnRwIEDJUkREREaOnSoxowZo2bNmikqKkpjx45Vx44dlZqaelEmCAAAvE+tAsqhQ4d03333qaioSBEREbr22mu1bNkypaWlSZLGjx+vsrIyjRgxQsXFxeratauWL1+usLAw13tMmzZNfn5+GjBggMrKypSSkqJ58+bJ19e3fmcGAAC8Vq0CyuzZs8857nA4lJmZqczMzBprgoKClJubq9zc3Np8NAAAuITwLB4AAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWqVVAyc7O1g033KCwsDC1bNlSt99+uz777DO3GmOMMjMzFRsbq+DgYPXo0UM7duxwqykvL9eoUaPUvHlzhYaGql+/fjp48GDdZwMAABqFWgWUNWvW6JFHHtEHH3yg/Px8nTp1Sunp6fr+++9dNVOmTNHUqVM1ffp0bdq0STExMUpLS9PRo0ddNRkZGVqyZIny8vK0fv16HTt2TH369FFlZWX9zQwAAHgtv9oUL1u2zG1/7ty5atmypQoLC/XLX/5Sxhjl5ORo0qRJ6t+/vyRp/vz5io6O1qJFi/TQQw+ppKREs2fP1ssvv6zU1FRJ0sKFCxUXF6cVK1aoV69e9TQ1AADgrep0DkpJSYkkKSoqSpK0Z88eOZ1Opaenu2oCAwOVlJSkgoICSVJhYaFOnjzpVhMbG6vExERXzZnKy8tVWlrqtgEAgMbrggOKMUaPP/64brrpJiUmJkqSnE6nJCk6OtqtNjo62jXmdDoVEBCgyMjIGmvOlJ2drYiICNcWFxd3oW0DAAAvcMEBZeTIkfr444+1ePHiamMOh8Nt3xhT7diZzlUzceJElZSUuLYDBw5caNsAAMALXFBAGTVqlN544w2tWrVKrVq1ch2PiYmRpGorIYcPH3atqsTExKiiokLFxcU11pwpMDBQ4eHhbhsAAGi8ahVQjDEaOXKkXn/9db333nuKj493G4+Pj1dMTIzy8/NdxyoqKrRmzRp1795dktS5c2f5+/u71RQVFWn79u2uGgAAcGmr1VU8jzzyiBYtWqSlS5cqLCzMtVISERGh4OBgORwOZWRkKCsrSwkJCUpISFBWVpZCQkI0cOBAV+3QoUM1ZswYNWvWTFFRURo7dqw6duzouqoHAABc2moVUGbOnClJ6tGjh9vxuXPn6oEHHpAkjR8/XmVlZRoxYoSKi4vVtWtXLV++XGFhYa76adOmyc/PTwMGDFBZWZlSUlI0b948+fr61m02AACgUahVQDHG/GiNw+FQZmamMjMza6wJCgpSbm6ucnNza/PxAADgEsGzeAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxT64Cydu1a9e3bV7GxsXI4HPr3v//tNm6MUWZmpmJjYxUcHKwePXpox44dbjXl5eUaNWqUmjdvrtDQUPXr108HDx6s00QAAEDjUeuA8v3336tTp06aPn36WcenTJmiqVOnavr06dq0aZNiYmKUlpamo0ePumoyMjK0ZMkS5eXlaf369Tp27Jj69OmjysrKC58JAABoNPxq+4LevXurd+/eZx0zxignJ0eTJk1S//79JUnz589XdHS0Fi1apIceekglJSWaPXu2Xn75ZaWmpkqSFi5cqLi4OK1YsUK9evWq9r7l5eUqLy937ZeWlta2bQAA4EXq9RyUPXv2yOl0Kj093XUsMDBQSUlJKigokCQVFhbq5MmTbjWxsbFKTEx01ZwpOztbERERri0uLq4+2wYAAJap14DidDolSdHR0W7Ho6OjXWNOp1MBAQGKjIysseZMEydOVElJiWs7cOBAfbYNAAAsU+uveM6Hw+Fw2zfGVDt2pnPVBAYGKjAwsN76AwAAdqvXFZSYmBhJqrYScvjwYdeqSkxMjCoqKlRcXFxjDQAAuLTVa0CJj49XTEyM8vPzXccqKiq0Zs0ade/eXZLUuXNn+fv7u9UUFRVp+/btrhoAAHBpq/VXPMeOHdMXX3zh2t+zZ4+2bt2qqKgotW7dWhkZGcrKylJCQoISEhKUlZWlkJAQDRw4UJIUERGhoUOHasyYMWrWrJmioqI0duxYdezY0XVVDwAAuLTVOqBs3rxZycnJrv3HH39ckjR48GDNmzdP48ePV1lZmUaMGKHi4mJ17dpVy5cvV1hYmOs106ZNk5+fnwYMGKCysjKlpKRo3rx58vX1rYcpAQAAb1frgNKjRw8ZY2ocdzgcyszMVGZmZo01QUFBys3NVW5ubm0/HgAAXAJ4Fg8AALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADreDSgzJgxQ/Hx8QoKClLnzp21bt06T7YDAAAs4bGA8o9//EMZGRmaNGmSPvroI/3iF79Q7969tX//fk+1BAAALOGxgDJ16lQNHTpUw4YN01VXXaWcnBzFxcVp5syZnmoJAABYws8TH1pRUaHCwkJNmDDB7Xh6eroKCgqq1ZeXl6u8vNy1X1JSIkkqLS2t9WdXlR+v9Wvq4kJ6vFDMrf4wt/rTkPNjbvWHudWPxjw3qfbz+6HeGPPjxcYDvvrqKyPJbNiwwe345MmTTfv27avVP/nkk0YSGxsbGxsbWyPYDhw48KNZwSMrKD9wOBxu+8aYasckaeLEiXr88cdd+1VVVfruu+/UrFmzs9bXt9LSUsXFxenAgQMKDw+/6J/XkJibd2Ju3qkxz01q3PNjbvXDGKOjR48qNjb2R2s9ElCaN28uX19fOZ1Ot+OHDx9WdHR0tfrAwEAFBga6HWvatOnFbPGswsPDG90fzB8wN+/E3LxTY56b1Ljnx9zqLiIi4rzqPHKSbEBAgDp37qz8/Hy34/n5+erevbsnWgIAABbx2Fc8jz/+uO677z516dJF3bp106xZs7R//349/PDDnmoJAABYwmMB5de//rW+/fZbPf300yoqKlJiYqL+93//V5dffrmnWqpRYGCgnnzyyWpfMzUGzM07MTfv1JjnJjXu+TG3hucw5nyu9QEAAGg4PIsHAABYh4ACAACsQ0ABAADWIaAAAADrEFBOs3///vN7PgAAALiouIrnNL6+vioqKlLLli093QpqacyYMcrOzlZAQICnWwEavf37959XXevWrS9yJ/Vv7dq151X3y1/+8iJ3AgLKaXx8fOR0Oht1QKmqqtK8efP0+uuva+/evXI4HIqPj9edd96p++67r0GebXQxtG3bVsHBwVq4cKGuv/56T7eDevavf/1Ld955p6fbqLXt27crMTHxnDXPPvtstSe7287Hx+esf1ec/jw1h8OhU6dONXRrdXb63Gr68ehwOFRZWdmQbdWbq6++WuvXr1dUVJQk6be//a0mT56sFi1aSPrvI2fatGmj48cb9qnIZ8NXPJcQY4z69eunYcOG6auvvlLHjh11zTXXaN++fXrggQf0q1/9ytMtXrDt27erR48e6tatm5555hlVVVV5uqV6VVRUpEmTJrn2b7rpJv30pz91bTfccIO++uorD3ZYN6dOndKOHTv0+eefux1funSpOnXqpEGDBnmos7rp1auX9u7dW+P4n/70Jz355JMN11A9+eijj7Rly5azbuPGjVNgYKDrB6C3iYyMVFxcnP7whz9o165dKi4urrZ99913nm7zgu3cudMtOObl5eno0aOufWOMTpw44YnWqvHo04xt9NJLL6lJkybnrBk9enQDdVO/5s2bp7Vr12rlypVKTk52G3vvvfd0++23a8GCBbr//vs91OGFCwkJ0V//+lfdeeedGjp0qN566y1NmDBBvr6+bnX9+vXzUId1M2PGDB05csS1v23bNg0ZMsT1Q+Cdd97RtGnT9Je//MVDHV64Tz/9VH369NG+ffskSbfddptmzpypAQMGaNu2bRo2bJjeeustD3d5YX7xi18oLS1NGzZsqLYy++c//1l/+MMf9Morr3iouwvXqVOnasdWrFihCRMm6PPPP9f48eM1duxYD3RWd0VFRVqyZInmzJmjKVOm6JZbbtHQoUN18803e+0K87mcbZXImnkauDgcDhMXF2fatGlT4xYfH+/pNi9YWlqayc7OrnF88uTJJj09vQE7ujj+/e9/G19fX+NwONw2Hx8fT7d2wTp16mSWL1/u2m/SpIn58ssvXfvLli0zV199tSdaq7O+ffuanj17mjfffNPcfffdxuFwmISEBPPUU0+Z0tJST7dXJydPnjQ333yz6dSpkzly5Ijr+F/+8hfj5+dnFi9e7MHu6sfmzZtNamqqCQwMNI888og5dOiQp1uqN/v37zdPPfWUadu2rfnJT35ifv/735uTJ096uq06cTgcbr9HZ/5d4nQ6rfm7koBymjN/4xqb6Oho89FHH9U4vmXLFhMdHd1wDdWz48ePm1GjRpnAwECTmZnp9X+RnC4iIsLtL5Ff/epXxul0uvb37NljgoODPdFanUVHR5vCwkJjjDHFxcXG4XCYWbNmebir+nP8+HFz4403mptuusmUlZWZadOmGT8/P/PKK694urU62bVrlxkwYIDx9fU199xzj9ufz8Zm9+7dJjk52fj4+Jhvv/3W0+3UiY+Pjzl8+LBrv0mTJmb37t2ufZsCCl/xnMaaZa2L5LvvvlN0dHSN49HR0SouLm7AjupPQUGBBg8erMDAQG3YsEGdO3f2dEv16tSpUyopKXHtv/76627jxcXF8vHxzlPKDh8+rJ/85CeSpKZNmyokJERJSUke7qr+BAcH6+2331ZSUpI6d+6szz//XHPnztXAgQM93doFGzFihGbPnq3k5GRt3rxZ1113nadbqnfl5eV67bXXNGfOHL3//vu69dZb9fbbb3vtuTU/MMYoJSVFfn7//fFfVlamvn37uq6AtOnEZgLKaUwjv6CpsrLS9YfybHx9fa36w1kbPXr00OjRozV58mTrnshZHzp06KCCgoIar1Bat26d2rdv38Bd1Q+Hw+EWrnx8fOTv7+/BjurPG2+84fr18OHD9eijj+pXv/qVwsPD3ca87dyov/3tbwoKCtLhw4c1ZMiQGuu2bNnSgF3Vj40bN2ru3LnKy8tTfHy8HnjgAf3zn//0+mDygzNPyr7tttuq1dxxxx0N1c45cZnxaZ566imNGzdOISEhnm7lovDx8VHv3r1r/AFeXl6uZcuWeeXlc2vXrm3U9yX485//rGeffVarVq3Stdde6za2bds29ezZUxMmTNC4ceM81OGF8/HxUUREhGsF88iRIwoPD6+2IuSNV06cz6qWN16y+tRTT51XnTdeoeTj46PWrVtr8ODB51yJ9bZQ6Y0IKKdpzDcfkqTf/OY351U3d+7ci9xJ/XviiSf0xBNP1LhCtH//fg0dOlT5+fkN3Fn9OHnypFJTU1VQUKC0tDR16NBBDodDO3fuVH5+vrp166aVK1d65crD/Pnzz6tu8ODBF7kToPGGyvN14sQJTZ8+3YqrsAgopzn9ktQf/rOcfl6K+X83IWqsfzC9WevWrdWsWTMtWLBAHTt2dBubNWuWxo4dqxtvvFHvvPOOhzqsu4qKCk2dOlV5eXmu+4UkJCTonnvu0WOPPdYov9qCnT799FNdffXV56xZuHCh7r333gbqCLXxzTff6MMPP5S/v79SUlLk6+urkydPasaMGcrOztapU6f0zTffeLpNAsrp/Pz81KpVKz3wwAPq27dvjf8aP9s9AOBZpaWlGjlypP75z3/qySef1O9+9zsdPHhQQ4YM0ebNm/WXv/xFw4YN83SbOIt7771XPXv2VI8ePdS2bVtPt3NRvPrqq1q8eLE+//xzORwOJSQkaODAgV55d1zpvyf+PvPMMxozZky1iwsOHTqkBx98UKtWrXK7ARjsUFBQoFtvvVUlJSVyOBzq0qWL5s6dq9tvv11VVVXKyMjQkCFDrDjVgYByGqfTqfnz52vevHkqLi7Wvffeq6FDh+qqq67ydGs4T0uXLtVDDz2kmJgY7dmzR926ddOLL76ouLg4T7dWJ8XFxVq4cKEGDx6s8PBwt7GSkhItWLDgrGPeICUlRR988IFOnDihVq1aKTk5WT179lRycrLX/75VVVXpnnvu0auvvqr27dvryiuvlDFGO3fu1BdffKG77rpLixcv9rorCF977TUNHz5cHTp00Lx583TFFVdI+u+qyaOPPqrExETNmTPHddybLFiw4KzHIyIi1KFDB1155ZUN3FH9SklJUYsWLfQ///M/mjNnjnJyctSmTRtlZmba97gTD1za7BXWrVtnhgwZYsLCwkzXrl3NrFmzTGVlpafbwo8oKioyqampxuFwmCZNmpiVK1d6uqV68fTTT5s777yzxvG77rrL/PGPf2zAjupXRUWFWbt2rXn66adNz549TUhIiPHx8TFXXHGFGTZsmFm0aJGnW7wgzz33nImKijJvvvlmtbGlS5eaqKgoM23atIZvrB4cOnTI3H777SY0NNT8+c9/Nv369TMhISEmJyfHVFVVebq9C9a0adOzbn5+fsbHx8f06dPHq28g2KxZM7N9+3ZjjDHff/+98fHxMf/85z893NXZEVB+hNPpbDQ36GnsFi1aZKKiokzPnj3Nzp07zbhx40xAQIAZPXq0OX78uKfbq5NOnTqZFStW1Di+YsUKc9111zVgRxdXeXm5WbNmjRk/frwJDw+35sZRtdWxY0cze/bsGsdfeuklk5iY2IAd1b+BAwe6/kHw8ccfe7qdi6aystJs3LjRXHvttWbMmDGebueCne1Osrt27fJgRzUjoNRgw4YNZujQoSY8PNzccMMNZubMmaygWOyOO+4wTZo0MS+88ILb8YKCAtO+fXuTkJBgCgoKPNRd3TVp0sTs27evxvF9+/aZsLCwBuzo4igrKzMrVqww//M//2NuvPFGExAQYBISEsywYcM83doFCQoKOufv2969e01QUFADdlR/vvvuO3PPPfeYkJAQM3HiRNO2bVtz1VVXmY0bN3q6tYsqPz/ftG/f3tNtXDAfHx/zxRdfmJKSEnPkyBETFhZmtm3bZkpKStw2G3CjttMUFRVpwYIFmjt3roqLizVo0CAVFBTommuu8XRr+BFFRUX66KOP1K5dO0n/PUvd4XCoW7du2rZtm373u98pKSlJFRUVHu70wvj6+urrr7+u8RL3r7/+2mvvJLtq1SrXtmnTJrVt21ZJSUkaOXKkkpKSdNlll3m6xQsWHBysI0eO1Pj7VlpaquDg4Abuqu7eeustPfjgg2rdurUKCwt15ZVXatKkSRo7dqxuuukmjRs3TpmZmee8MaS3ateunQ4ePOjpNi6YMcbtpo7GGLcbQBqLrlblJNnTBAQEKDY2VoMHD1a/fv1qvKfEmTfKgudVVVWptLRUkyZN0j/+8Q/XLfsjIyN19913649//KM+/vhjr72ZW3Jysrp27apnn332rOO/+93vtHHjRq1ataqBO6u7H26MNWHCBN1xxx1q0aKFp1uqN7feeqtat26tmTNnnnX84Ycf1oEDB/T22283cGd1ExQUpCeeeEITJkyoFozz8/M1bNgwRUZGauvWrZ5p8CJauXKlRowYoc8++8zTrVyQNWvWnFedFY+b8Oj6jWXOfPKtj49Po3oibmP27bffmvbt25vQ0FDz29/+1kybNs1MnTrVPPjggyY0NNRceeWV5rvvvvN0mxfsX//6l/Hz8zO5ubnm1KlTruOnTp0yL7zwgvH39zevvvqqBzu8cOPHjzddu3Y1AQEBpmPHjmbkyJHmX//6l9sDzbzVhg0bjL+/v7nrrrvMhx9+6FpWf//9982dd95p/P39zfr16z3dZq1t27btnOMlJSVmyJAhDdRNw6iqqjKFhYWmU6dOXn0OijdhBeU0+/bt+9Ga4uLiRvlgLG+XkZGhlStXasWKFdUeiOh0OpWenq6UlBRNmzbNQx3W3aRJk5Sdna2wsDC1bdtWDodDX375pY4dO6Zx48bVuLriLY4dO6Z169Zp9erVWr16tT766CO1b99eSUlJSk5O9tp7hixZskS//e1vq92qPzIyUn//+9+tee5JbQwZMkTPP/+8wsLCPN1KvYuMjDzrpbbHjh1TZWWlbr75Zv3jH/9QkyZNPNDdxWGM0apVq1RWVqbu3bsrMjLS0y1J4iue81JSUqJXXnlFs2fP1tatW634bg7u2rRpo7///e/q1avXWceXLVumhx9+WHv37m3YxurZpk2b9Morr2jXrl2u75IHDhyon/3sZ55urd599913mjp1qnJzc10/HLzV8ePH9e6772rXrl2SpPbt2ys9PV0hISH66quvXE9z9ha+vr4qKipSy5YtPd1KvXvmmWfOes5QeHi4rrzySq+/L9aRI0f06KOPasuWLfr5z3+u5557TrfccosKCgokSS1atFB+fr4VpzIQUM7hvffe05w5c/T666/r8ssv1x133KE77rijxifKwnMCAwP15ZdfqlWrVmcdP3jwoNq1a6cTJ040cGf14/jx4xo3bpz+/e9/6+TJk0pJSVFubq6aN2/u6dbqTVVVlTZt2uRaQdmwYYOOHTum1q1bKzk52SufEXUuTqdTkydP1ksvvaSysjJPt1MrPj4+cjqdjTKgNG3aVLm5ubrvvvs83cpFMWzYMK1du1b333+/3nrrLfn4+MgYo5ycHPn4+Gj8+PFq0qSJ3nzzTU+3yjkoZzpw4IB55plnTHx8vGnZsqUZOXKk8fPzMzt27PB0aziH2NhYs27duhrH165da2JjYxuwo/o1duxYExISYh588EEzevRo07x583PeuM2bTJkyxfTu3duEh4cbh8NhWrVqZe69914ze/Zss3v3bk+3VyfFxcVm4MCBpnnz5uayyy4zzz//vKmsrDR/+MMfTHBwsOnSpYtX3oTO4XA0inOEzuavf/2rCQsLM/379zfffPONp9upd7GxsWb16tXGGGMOHjxoHA6HWbVqlWv8ww8/NNHR0R7qzh0B5TS9e/c2YWFh5p577jFvvfWW62REAor9hgwZYn75y1+a8vLyamMnTpwwSUlJXn3SXtu2bc3ixYtd+x9++KHx8/NzO2HWW1122WVm4MCB5sUXXzRffPGFp9upV8OHDzetWrUyY8aMMddcc43x8fExvXv3NsnJya4fEt7I4XCYpk2bmsjIyHNu3mr37t0mOTnZREdHm6VLl3q6nXrl6+trvv76a9d+cHCw2/93RUVF1lwMwlc8p/Hz89Po0aM1fPhwJSQkuI77+/tr27ZtP/r0TnjOwYMH1aVLFwUGBuqRRx5xPS/j008/1YwZM1ReXq7Nmzd77bNdAgICtGfPHrdzFYKDg/X555977Zx+cPz4cY0dO1ZLly7VyZMnlZqaqhdeeKFRfH11+eWXa/bs2UpNTdXu3bvVrl07jR49Wjk5OZ5urU58fHyUk5OjiIiIc9YNHjy4gTq6OKZPn67HHntMV111VbV7umzZssVDXdXNmV/PhYWFadu2ba4HdR46dEixsbFWnPPV+O6iUwfr1q3TnDlz1KVLF1155ZW677779Otf/9rTbeE8tGrVSu+//75GjBihiRMn6ofc7XA4lJaWpunTp3v1D/LKykoFBAS4HfPz89OpU6c81FH9yczM1Pz58zVo0CAFBQVp8eLFGj58uF599VVPt1ZnX3/9tesfNm3btlVQUFCjear23Xff3SjPQfnBvn379NprrykqKkq33XZbo7rp3EsvveS6CunUqVOaN2+e6x8ENj2BmhWUszh+/Ljy8vI0Z84cbdy4UZWVlZo6daqGDBnSKC+ra2yKi4tdV0u0a9dOUVFRHu6o7nx8fNS7d28FBga6jr355pvq2bOnQkNDXcdef/11T7RXJ1dccYUmT56su+++W5K0ceNG3XjjjTpx4oR8fX093F3d+Pr6yul0um4+FxYWpo8//ljx8fEe7qxuGvNVPJL04osvasyYMUpNTdXf//73RnXzwDZt2pzXE4v37NnTAN2cGwHlR3z22WeaPXu2Xn75ZR05ckRpaWl64403PN0WLjG/+c1vzqvOG690acxfX50ZLM8WKiXvC5aN+Sqem2++WRs3blROTo7uv/9+T7dzSSOgnKfKykq9+eabmjNnDgEFqEdnrjJIjWeloTEHy8YqLS1Nc+fOrfGWBd7uvffe08iRI/XBBx8oPDzcbaykpETdu3fX3/72N/3iF7/wUIf/PwIKAI9qzF9fAbbp16+fkpOT9dhjj511/IUXXtCqVau0ZMmSBu6sOgIKAI9ilQFoOJdffrmWLVtW4x1xd+7cqfT0dO3fv7+BO6uu8ZyWDMArETyAhnPo0CH5+/vXOO7n56f/+7//a8COaubz4yUAAKAx+MlPfqJPPvmkxvGPP/5Yl112WQN2VDMCCgAAl4hbbrlFTzzxxFmfS1ZWVqYnn3xSffr08UBn1XEOCgAAl4hDhw7ppz/9qXx9fTVy5Eh16NBBDodD//nPf/TXv/5VlZWV2rJli6Kjoz3dKgEFAIBLyb59+zR8+HC9++67bnfd7tWrl2bMmKE2bdp4tsH/h4ACAMAlqLi4WF988YWMMUpISFBkZKSnW3JDQAEAANbhJFkAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAFw0axevVoOh0NHjhw5r/oePXooIyPjovYEwDsQUADUmzMDRvfu3VVUVKSIiAjPNQXAKxFQAFw0AQEBiomJkcPh8MjnV1RUeORzAdQdAQVAvXjggQe0Zs0aPf/883I4HHI4HJo3b161r3g2bNigpKQkhYSEKDIyUr169VJxcfFZ33PZsmWKiIjQggULJElfffWVfv3rXysyMlLNmjXTbbfdpr1797r1cPvttys7O1uxsbFq3779xZwygIuIgAKgXjz//PPq1q2bHnzwQRUVFamoqEhxcXFuNVu3blVKSoquueYavf/++1q/fr369u2rysrKau+Xl5enAQMGaMGCBbr//vt1/PhxJScnq0mTJlq7dq3Wr1+vJk2a6Oabb3ZbKVm5cqX+85//KD8/X2+99dZFnzeAi8PP0w0AaBwiIiIUEBCgkJAQxcTESJJ27tzpVjNlyhR16dJFM2bMcB275pprqr3XjBkz9Pvf/15Lly5VcnKypP8GFh8fH7300kuur4zmzp2rpk2bavXq1UpPT5ckhYaG6qWXXlJAQMBFmSeAhkFAAdBgtm7dqrvuuuucNa+99poOHTqk9evX62c/+5nreGFhob744guFhYW51Z84cUJffvmla79jx46EE6ARIKAAaDDBwcE/WnPddddpy5Ytmjt3rm644QbXaklVVZU6d+6sV155pdprWrRo4fp1aGho/TUMwGM4BwVAvQkICDjr+SQ/uPbaa7Vy5cpzvscVV1yhVatWaenSpRo1apTr+E9/+lPt2rVLLVu2VLt27dw2LmMGGh8CCoB606ZNG3344Yfau3evvvnmG1VVVbmNT5w4UZs2bdKIESP08ccfa+fOnZo5c6a++eYbt7r27dtr1apVeu2111z3VRk0aJCaN2+u2267TevWrdOePXu0Zs0aPfroozp48GBDTRFAAyGgAKg3Y8eOla+vr66++mq1aNFC+/fvdxtv3769li9frm3btulnP/uZunXrpqVLl8rPr/q3zR06dNB7772nxYsXa8yYMQoJCdHatWvVunVr9e/fX1dddZWGDBmisrIyhYeHN9QUATQQhzHGeLoJAACA07GCAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADr/H8ijfSqmeRyYAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "strat_sample_dt = small_df.groupby(['ticker']).sample(frac = 0.1)\n", "strat_sample_dt['ticker'].value_counts().plot(kind='bar')" @@ -157,9 +440,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_1945/2932236319.py:2: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .apply(func)\n", + " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .apply(func, meta=('x', 'f8')) for series result\n", + " strat_sample_dd_dt = (dd_dt\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAHICAYAAABkoRGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1qElEQVR4nO3de1jUZf7/8dcAchQQPECsmJhoB8xabV2tXURQs9RaK7e0slXb0tQoD6vrbtFBaN1NKVzdtTxmym5brh2+mWieqVRMS1vL8lyMfisETQSF+/dH3+a3A2IiI3MPPh/X9bkuP5/7PTPv+1LhNZ+jwxhjBAAAYBE/bzcAAABQFQEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6Ad5u4HxUVlbqq6++Unh4uBwOh7fbAQAA58AYo2PHjikuLk5+fmffR+KTAeWrr75SfHy8t9sAAADn4eDBg2rZsuVZa3wyoISHh0v6foIRERFe7gYAAJyLkpISxcfHu36Pn41PBpQfDutEREQQUAAA8DHncnoGJ8kCAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArBPg7QbqW+uJb9Xr5+175uZ6+yzm5jnMzXPqc37MzXOYm2fU99waEvagAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADr1DqgfPnll7r77rvVtGlThYaG6pprrlFBQYFr3BijjIwMxcXFKSQkRN27d9fOnTvd3qOsrEyjR49Ws2bNFBYWpv79++vQoUN1nw0AAGgQahVQioqKdP3116tRo0Z6++239cknn+jZZ59VkyZNXDVTp07VtGnTNGPGDG3evFmxsbHq2bOnjh075qpJT0/X0qVLlZubqw0bNuj48ePq27evKioqPDYxAADgu2r1LJ4//elPio+P17x581zbWrdu7fqzMUbZ2dmaPHmyBgwYIElasGCBYmJitHjxYj3wwAMqLi7WnDlz9NJLLyktLU2StGjRIsXHx2vlypXq3bt3tc8tKytTWVmZa72kpKRWkwQAAL6lVntQXn/9dXXu3Fl33HGHWrRooWuvvVYvvPCCa3zv3r1yOp3q1auXa1tQUJCSk5OVn58vSSooKNCpU6fcauLi4pSUlOSqqSorK0uRkZGuJT4+vlaTBAAAvqVWAWXPnj2aNWuWEhMT9c477+jBBx/UmDFjtHDhQkmS0+mUJMXExLi9LiYmxjXmdDoVGBioqKioGmuqmjRpkoqLi13LwYMHa9M2AADwMbU6xFNZWanOnTsrMzNTknTttddq586dmjVrlu69915XncPhcHudMabatqrOVhMUFKSgoKDatAoAAHxYrfagXHLJJbryyivdtl1xxRU6cOCAJCk2NlaSqu0JOXLkiGuvSmxsrMrLy1VUVFRjDQAAuLjVKqBcf/31+vTTT922ffbZZ7r00kslSQkJCYqNjVVeXp5rvLy8XGvXrlW3bt0kSZ06dVKjRo3cagoLC7Vjxw5XDQAAuLjV6hDPI488om7duikzM1MDBw7Upk2bNHv2bM2ePVvS94d20tPTlZmZqcTERCUmJiozM1OhoaEaNGiQJCkyMlLDhg3T2LFj1bRpU0VHR2vcuHHq0KGD66oeAABwcatVQLnuuuu0dOlSTZo0SU8++aQSEhKUnZ2twYMHu2omTJig0tJSjRw5UkVFRerSpYtWrFih8PBwV8306dMVEBCggQMHqrS0VKmpqZo/f778/f09NzMAAOCzahVQJKlv377q27dvjeMOh0MZGRnKyMiosSY4OFg5OTnKycmp7ccDAICLAM/iAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYJ8HYDAADAM1pPfKteP2/fMzdfsPdmDwoAALAOAQUAAFiHgAIAAKxTq4CSkZEhh8PhtsTGxrrGjTHKyMhQXFycQkJC1L17d+3cudPtPcrKyjR69Gg1a9ZMYWFh6t+/vw4dOuSZ2QAAgAah1ntQrrrqKhUWFrqWjz/+2DU2depUTZs2TTNmzNDmzZsVGxurnj176tixY66a9PR0LV26VLm5udqwYYOOHz+uvn37qqKiwjMzAgAAPq/WV/EEBAS47TX5gTFG2dnZmjx5sgYMGCBJWrBggWJiYrR48WI98MADKi4u1pw5c/TSSy8pLS1NkrRo0SLFx8dr5cqV6t27dx2nAwAAGoJa70HZvXu34uLilJCQoDvvvFN79uyRJO3du1dOp1O9evVy1QYFBSk5OVn5+fmSpIKCAp06dcqtJi4uTklJSa6aMykrK1NJSYnbAgAAGq5aBZQuXbpo4cKFeuedd/TCCy/I6XSqW7du+uabb+R0OiVJMTExbq+JiYlxjTmdTgUGBioqKqrGmjPJyspSZGSka4mPj69N2wAAwMfUKqD06dNHt912mzp06KC0tDS99db3N4RZsGCBq8bhcLi9xhhTbVtVP1YzadIkFRcXu5aDBw/Wpm0AAOBj6nSZcVhYmDp06KDdu3e7zkupuifkyJEjrr0qsbGxKi8vV1FRUY01ZxIUFKSIiAi3BQAANFx1CihlZWX6z3/+o0suuUQJCQmKjY1VXl6ea7y8vFxr165Vt27dJEmdOnVSo0aN3GoKCwu1Y8cOVw0AAECtruIZN26c+vXrp1atWunIkSN6+umnVVJSoiFDhsjhcCg9PV2ZmZlKTExUYmKiMjMzFRoaqkGDBkmSIiMjNWzYMI0dO1ZNmzZVdHS0xo0b5zpkBAAAINUyoBw6dEh33XWXvv76azVv3lw///nP9f777+vSSy+VJE2YMEGlpaUaOXKkioqK1KVLF61YsULh4eGu95g+fboCAgI0cOBAlZaWKjU1VfPnz5e/v79nZwYAAHxWrQJKbm7uWccdDocyMjKUkZFRY01wcLBycnKUk5NTm48GAAAXEZ7FAwAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDp1CihZWVlyOBxKT093bTPGKCMjQ3FxcQoJCVH37t21c+dOt9eVlZVp9OjRatasmcLCwtS/f38dOnSoLq0AAIAG5LwDyubNmzV79mxdffXVbtunTp2qadOmacaMGdq8ebNiY2PVs2dPHTt2zFWTnp6upUuXKjc3Vxs2bNDx48fVt29fVVRUnP9MAABAg3FeAeX48eMaPHiwXnjhBUVFRbm2G2OUnZ2tyZMna8CAAUpKStKCBQt04sQJLV68WJJUXFysOXPm6Nlnn1VaWpquvfZaLVq0SB9//LFWrlzpmVkBAACfdl4B5aGHHtLNN9+stLQ0t+179+6V0+lUr169XNuCgoKUnJys/Px8SVJBQYFOnTrlVhMXF6ekpCRXTVVlZWUqKSlxWwAAQMMVUNsX5ObmauvWrdq8eXO1MafTKUmKiYlx2x4TE6P9+/e7agIDA932vPxQ88Prq8rKytITTzxR21YBAICPqtUelIMHD+rhhx/WokWLFBwcXGOdw+FwWzfGVNtW1dlqJk2apOLiYtdy8ODB2rQNAAB8TK0CSkFBgY4cOaJOnTopICBAAQEBWrt2rZ5//nkFBAS49pxU3RNy5MgR11hsbKzKy8tVVFRUY01VQUFBioiIcFsAAEDDVauAkpqaqo8//ljbtm1zLZ07d9bgwYO1bds2tWnTRrGxscrLy3O9pry8XGvXrlW3bt0kSZ06dVKjRo3cagoLC7Vjxw5XDQAAuLjV6hyU8PBwJSUluW0LCwtT06ZNXdvT09OVmZmpxMREJSYmKjMzU6GhoRo0aJAkKTIyUsOGDdPYsWPVtGlTRUdHa9y4cerQoUO1k24BAMDFqdYnyf6YCRMmqLS0VCNHjlRRUZG6dOmiFStWKDw83FUzffp0BQQEaODAgSotLVVqaqrmz58vf39/T7cDAAB8UJ0Dypo1a9zWHQ6HMjIylJGRUeNrgoODlZOTo5ycnLp+PAAAaIB4Fg8AALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1ahVQZs2apauvvloRERGKiIhQ165d9fbbb7vGjTHKyMhQXFycQkJC1L17d+3cudPtPcrKyjR69Gg1a9ZMYWFh6t+/vw4dOuSZ2QAAgAahVgGlZcuWeuaZZ7RlyxZt2bJFPXr00C233OIKIVOnTtW0adM0Y8YMbd68WbGxserZs6eOHTvmeo/09HQtXbpUubm52rBhg44fP66+ffuqoqLCszMDAAA+q1YBpV+/frrpppvUrl07tWvXTlOmTFHjxo31/vvvyxij7OxsTZ48WQMGDFBSUpIWLFigEydOaPHixZKk4uJizZkzR88++6zS0tJ07bXXatGiRfr444+1cuXKCzJBAADge877HJSKigrl5ubqu+++U9euXbV37145nU716tXLVRMUFKTk5GTl5+dLkgoKCnTq1Cm3mri4OCUlJblqzqSsrEwlJSVuCwAAaLhqHVA+/vhjNW7cWEFBQXrwwQe1dOlSXXnllXI6nZKkmJgYt/qYmBjXmNPpVGBgoKKiomqsOZOsrCxFRka6lvj4+Nq2DQAAfEitA0r79u21bds2vf/++xoxYoSGDBmiTz75xDXucDjc6o0x1bZV9WM1kyZNUnFxsWs5ePBgbdsGAAA+pNYBJTAwUG3btlXnzp2VlZWljh076rnnnlNsbKwkVdsTcuTIEddeldjYWJWXl6uoqKjGmjMJCgpyXTn0wwIAABquOt8HxRijsrIyJSQkKDY2Vnl5ea6x8vJyrV27Vt26dZMkderUSY0aNXKrKSws1I4dO1w1AAAAAbUp/v3vf68+ffooPj5ex44dU25urtasWaPly5fL4XAoPT1dmZmZSkxMVGJiojIzMxUaGqpBgwZJkiIjIzVs2DCNHTtWTZs2VXR0tMaNG6cOHTooLS3tgkwQAAD4nloFlMOHD+uee+5RYWGhIiMjdfXVV2v58uXq2bOnJGnChAkqLS3VyJEjVVRUpC5dumjFihUKDw93vcf06dMVEBCggQMHqrS0VKmpqZo/f778/f09OzMAAOCzahVQ5syZc9Zxh8OhjIwMZWRk1FgTHBysnJwc5eTk1OajAQDARYRn8QAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALBOrQJKVlaWrrvuOoWHh6tFixa69dZb9emnn7rVGGOUkZGhuLg4hYSEqHv37tq5c6dbTVlZmUaPHq1mzZopLCxM/fv316FDh+o+GwAA0CDUKqCsXbtWDz30kN5//33l5eXp9OnT6tWrl7777jtXzdSpUzVt2jTNmDFDmzdvVmxsrHr27Kljx465atLT07V06VLl5uZqw4YNOn78uPr27auKigrPzQwAAPisgNoUL1++3G193rx5atGihQoKCvTLX/5SxhhlZ2dr8uTJGjBggCRpwYIFiomJ0eLFi/XAAw+ouLhYc+bM0UsvvaS0tDRJ0qJFixQfH6+VK1eqd+/eHpoaAADwVXU6B6W4uFiSFB0dLUnau3evnE6nevXq5aoJCgpScnKy8vPzJUkFBQU6deqUW01cXJySkpJcNVWVlZWppKTEbQEAAA3XeQcUY4weffRR3XDDDUpKSpIkOZ1OSVJMTIxbbUxMjGvM6XQqMDBQUVFRNdZUlZWVpcjISNcSHx9/vm0DAAAfcN4BZdSoUfroo4+0ZMmSamMOh8Nt3RhTbVtVZ6uZNGmSiouLXcvBgwfPt20AAOADziugjB49Wq+//rpWr16tli1burbHxsZKUrU9IUeOHHHtVYmNjVV5ebmKiopqrKkqKChIERERbgsAAGi4ahVQjDEaNWqUXnvtNb377rtKSEhwG09ISFBsbKzy8vJc28rLy7V27Vp169ZNktSpUyc1atTIraawsFA7duxw1QAAgItbra7ieeihh7R48WItW7ZM4eHhrj0lkZGRCgkJkcPhUHp6ujIzM5WYmKjExERlZmYqNDRUgwYNctUOGzZMY8eOVdOmTRUdHa1x48apQ4cOrqt6AADAxa1WAWXWrFmSpO7du7ttnzdvnu677z5J0oQJE1RaWqqRI0eqqKhIXbp00YoVKxQeHu6qnz59ugICAjRw4ECVlpYqNTVV8+fPl7+/f91mAwAAGoRaBRRjzI/WOBwOZWRkKCMjo8aa4OBg5eTkKCcnpzYfDwAALhI8iwcAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6tQ4o69atU79+/RQXFyeHw6F///vfbuPGGGVkZCguLk4hISHq3r27du7c6VZTVlam0aNHq1mzZgoLC1P//v116NChOk0EAAA0HLUOKN999506duyoGTNmnHF86tSpmjZtmmbMmKHNmzcrNjZWPXv21LFjx1w16enpWrp0qXJzc7VhwwYdP35cffv2VUVFxfnPBAAANBgBtX1Bnz591KdPnzOOGWOUnZ2tyZMna8CAAZKkBQsWKCYmRosXL9YDDzyg4uJizZkzRy+99JLS0tIkSYsWLVJ8fLxWrlyp3r17V3vfsrIylZWVudZLSkpq2zYAAPAhHj0HZe/evXI6nerVq5drW1BQkJKTk5Wfny9JKigo0KlTp9xq4uLilJSU5KqpKisrS5GRka4lPj7ek20DAADLeDSgOJ1OSVJMTIzb9piYGNeY0+lUYGCgoqKiaqypatKkSSouLnYtBw8e9GTbAADAMrU+xHMuHA6H27oxptq2qs5WExQUpKCgII/1BwAA7ObRPSixsbGSVG1PyJEjR1x7VWJjY1VeXq6ioqIaawAAwMXNowElISFBsbGxysvLc20rLy/X2rVr1a1bN0lSp06d1KhRI7eawsJC7dixw1UDAAAubrU+xHP8+HF9/vnnrvW9e/dq27Ztio6OVqtWrZSenq7MzEwlJiYqMTFRmZmZCg0N1aBBgyRJkZGRGjZsmMaOHaumTZsqOjpa48aNU4cOHVxX9QAAgItbrQPKli1blJKS4lp/9NFHJUlDhgzR/PnzNWHCBJWWlmrkyJEqKipSly5dtGLFCoWHh7teM336dAUEBGjgwIEqLS1Vamqq5s+fL39/fw9MCQAA+LpaB5Tu3bvLGFPjuMPhUEZGhjIyMmqsCQ4OVk5OjnJycmr78QAA4CLAs3gAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYh4ACAACsQ0ABAADWIaAAAADrEFAAAIB1CCgAAMA6BBQAAGAdAgoAALAOAQUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1iGgAAAA6xBQAACAdQgoAADAOgQUAABgHQIKAACwDgEFAABYx6sBZebMmUpISFBwcLA6deqk9evXe7MdAABgCa8FlH/84x9KT0/X5MmT9eGHH+oXv/iF+vTpowMHDnirJQAAYAmvBZRp06Zp2LBhGj58uK644gplZ2crPj5es2bN8lZLAADAEgHe+NDy8nIVFBRo4sSJbtt79eql/Pz8avVlZWUqKytzrRcXF0uSSkpKav3ZlWUnav2aujifHs8Xc/Mc5uY59Tk/5uY5zM0zGvLcpNrP74d6Y8yPFxsv+PLLL40ks3HjRrftU6ZMMe3atatW//jjjxtJLCwsLCwsLA1gOXjw4I9mBa/sQfmBw+FwWzfGVNsmSZMmTdKjjz7qWq+srNS3336rpk2bnrHe00pKShQfH6+DBw8qIiLign9efWJuvom5+aaGPDepYc+PuXmGMUbHjh1TXFzcj9Z6JaA0a9ZM/v7+cjqdbtuPHDmimJiYavVBQUEKCgpy29akSZML2eIZRURENLh/mD9gbr6Jufmmhjw3qWHPj7nVXWRk5DnVeeUk2cDAQHXq1El5eXlu2/Py8tStWzdvtAQAACzitUM8jz76qO655x517txZXbt21ezZs3XgwAE9+OCD3moJAABYwmsB5de//rW++eYbPfnkkyosLFRSUpL+53/+R5deeqm3WqpRUFCQHn/88WqHmRoC5uabmJtvashzkxr2/Jhb/XMYcy7X+gAAANQfnsUDAACsQ0ABAADWIaAAAADrEFAAAIB1CCjweQcOHDi35zoAAHwGV/FcJNatW3dOdb/85S8vcCee5+/vr8LCQrVo0cLbrQAuY8eOVVZWlgIDA73dCmrhwIED51TXqlWrC9wJCCgXCT8/P9dzi2r6K3c4HKqoqKjPtjzCz89PTqezwQeUyspKzZ8/X6+99pr27dsnh8OhhIQE3X777brnnnvq5blU3vKvf/1Lt99+u7fbqJU2bdooJCREixYt0rXXXuvtdjxux44dSkpKOmvNM888U+2p9bb775+V/+2/nxXncDh0+vTp+m7NI6688kpt2LBB0dHRkqTf/va3mjJlipo3by7p+0fOtG7dWidO1O9Tkc+EQzxVFBYWavLkya71G264QT/96U9dy3XXXacvv/zSix2en6ioKMXHx+uPf/yjdu/eraKiomrLt99+6+02UQNjjPr376/hw4fryy+/VIcOHXTVVVdp//79uu+++/SrX/3K2y3WyenTp7Vz50599tlnbtuXLVumjh07avDgwV7q7Pzt2LFD3bt3V9euXfXUU0+psrLS2y15VO/evbVv374ax//0pz/p8ccfr7+GPOTDDz/U1q1bz7iMHz9eQUFBrl/uvmjXrl1u4So3N1fHjh1zrRtjdPLkSW+0Vo1Xn2Zso5kzZ+ro0aOu9e3bt2vo0KGuf5Bvv/22pk+frr/85S9e6vD8FBYWaunSpZo7d66mTp2qm266ScOGDdONN97YIL55v/jii2rcuPFZa8aMGVNP3Xje/PnztW7dOq1atUopKSluY++++65uvfVWLVy4UPfee6+XOjx/n3zyifr27av9+/dLkm655RbNmjVLAwcO1Pbt2zV8+HC9+eabXu6y9kJDQ/XXv/5Vt99+u4YNG6Y333xTEydOlL+/v1td//79vdRh3fziF79Qz549tXHjxmp7L//85z/rj3/8o15++WUvdXf+OnbsWG3bypUrNXHiRH322WeaMGGCxo0b54XOLowz7VG35neCgZuOHTuaFStWuNYbN25svvjiC9f68uXLzZVXXumN1jzmwIED5oknnjBt2rQxP/nJT8zvf/97c+rUKW+3dd4cDoeJj483rVu3rnFJSEjwdpt10rNnT5OVlVXj+JQpU0yvXr3qsSPP6devn+nRo4d54403zJ133mkcDodJTEw0TzzxhCkpKfF2ex7x73//2/j7+xuHw+G2+Pn5ebu183bq1Clz4403mo4dO5qjR4+6tv/lL38xAQEBZsmSJV7szjO2bNli0tLSTFBQkHnooYfM4cOHvd1SnTkcDrd5VP0d53Q6rfl3SUCpIjIy0u0v61e/+pVxOp2u9b1795qQkBBvtOZxe/bsMSkpKcbPz89888033m7nvFX9D9cQxcTEmA8//LDG8a1bt5qYmJj6a8iDYmJiTEFBgTHGmKKiIuNwOMzs2bO93JVnnDhxwowePdoEBQWZjIwMn/4icCYnTpww119/vbnhhhtMaWmpmT59ugkICDAvv/yyt1urk927d5uBAwcaf39/c9ddd7n9TvB1fn5+5siRI671xo0bmz179rjWbQooHOKp4vTp0youLnatv/baa27jRUVF8vPz3VN3ysrK9Oqrr2ru3Ll67733dPPNN+utt97y6WOq1uyOvIC+/fZbxcTE1DgeExOjoqKieuzIc44cOaKf/OQnkqQmTZooNDRUycnJXu6q7vLz8zVkyBAFBQVp48aN6tSpk7db8riQkBC99dZbSk5OVqdOnfTZZ59p3rx5GjRokLdbO28jR47UnDlzlJKSoi1btuiaa67xdkseZYxRamqqAgK+//VfWlqqfv36ua42s+nkXwJKFe3bt1d+fn6NZ92vX79e7dq1q+eu6m7Tpk2aN2+ecnNzlZCQoPvuu0///Oc/fTqY/MBcBBeiVVRUuH6gnIm/v79VP1hqw+FwuIV+Pz8/NWrUyIsdeUb37t01ZswYTZkyxbqnxHrC66+/7vrziBEj9PDDD+tXv/qVIiIi3MZ87Rybv/3tbwoODtaRI0c0dOjQGuu2bt1aj115TtUTl2+55ZZqNbfddlt9tXNWXGZcxZ///Gc988wzWr16ta6++mq3se3bt6tHjx6aOHGixo8f76UOz4+fn59atWqlIUOGnPWbnK/9MJGkJ554QuPHj1doaKi3W7lg/Pz81KdPnxp/0ZWVlWn58uU+e5l4ZGSka0/Y0aNHFRERUW1Ppa9dZbZu3TqfvK/QuTqXPcm+eOuCJ5544pzqfPEKJV9DQKni1KlTSktLU35+vnr27Kn27dvL4XBo165dysvLU9euXbVq1Sqf+4bXUH+YSBfHjZV+85vfnFPdvHnzLnAnnrdgwYJzqhsyZMgF7sSzHnvsMT322GM17vk6cOCAhg0bpry8vHruDKjZyZMnNWPGDCuuVCKgnEF5ebmmTZum3Nxc130ZEhMTddddd+mRRx5pkLtrfdl/X7b5wz/n/z4vxfzfDZZ8MXzBd7Vq1UpNmzbVwoUL1aFDB7ex2bNna9y4cbr++uv19ttve6lDnMknn3yiK6+88qw1ixYt0t13311PHXne119/rQ8++ECNGjVSamqq/P39derUKc2cOVNZWVk6ffq0vv76a2+3SUCB7wsICFDLli113333qV+/fjV+Yz3T/Q3gfXfffbd69Oih7t27q02bNt5ux2NKSko0atQo/fOf/9Tjjz+u3/3udzp06JCGDh2qLVu26C9/+YuGDx/u7Tbr7JVXXtGSJUv02WefyeFwKDExUYMGDfK5O//+ICQkRE899ZTGjh1b7QT8w4cP6/7779fq1avdbm7mS/Lz83XzzTeruLhYDodDnTt31rx583TrrbeqsrJS6enpGjp0qBWHzAkoVRQVFWnRokUaMmSIIiIi3MaKi4u1cOHCM47ZbuHChWfcHhkZqfbt2+vyyy+v5448x+l0asGCBZo/f76Kiop09913a9iwYbriiiu83RrOQWpqqt5//32dPHlSLVu2VEpKinr06KGUlBTFx8d7u706W7ZsmR544AHFxsZq79696tq1q1544QWfn1tlZaXuuusuvfLKK2rXrp0uv/xyGWO0a9cuff7557rjjju0ZMkSn7vK7tVXX9WIESPUvn17zZ8/X5dddpmk7/eaPPzww0pKStLcuXNd231Namqqmjdvrj/84Q+aO3eusrOz1bp1a2VkZNj3yAwvXNpstSeffNLcfvvtNY7fcccd5umnn67HjjyjSZMmZ1wCAgKMn5+f6du3b4O4Kdb69evN0KFDTXh4uOnSpYuZPXu2qaio8HZb+BHl5eVm3bp15sknnzQ9evQwoaGhxs/Pz1x22WVm+PDhZvHixd5u8bwVFhaatLQ043A4TOPGjc2qVau83ZJHPPvssyY6Otq88cYb1caWLVtmoqOjzfTp0+u/MQ84fPiwufXWW01YWJj585//bPr3729CQ0NNdna2qays9HZ7ddK0aVOzY8cOY4wx3333nfHz8zP//Oc/vdzVmRFQqujYsaNZuXJljeMrV64011xzTT12dGFVVFSYTZs2mauvvtqMHTvW2+14jNPpbBA3obtYlZWVmbVr15oJEyaYiIgIa24cVVuLFy820dHRpkePHmbXrl1m/PjxJjAw0IwZM8acOHHC2+3VSYcOHcycOXNqHH/xxRdNUlJSPXbkeYMGDXIFy48++sjb7XjEme4ku3v3bi92VDMCShWNGzc2+/fvr3F8//79Jjw8vB47qh95eXmmXbt23m6jzjZu3GiGDRtmIiIizHXXXWdmzZrFHhQfUlpaalauXGn+8Ic/mOuvv94EBgaaxMREM3z4cG+3Vmu33Xabady4sXn++efdtufn55t27dqZxMREk5+f76Xu6i44OPisPyv37dtngoOD67Ejz/n222/NXXfdZUJDQ82kSZNMmzZtzBVXXGE2bdrk7dbqzM/Pz3z++eemuLjYHD161ISHh5vt27eb4uJit8UG3KitCn9/f3311Vc1XpL61Vdf+fSdZGvStm1bHTp0yNttnJfCwkItXLhQ8+bNU1FRkQYPHqz8/HxdddVV3m4N52D16tWuZfPmzWrTpo2Sk5M1atQoJScn65JLLvF2i+elsLBQH374odq2bSvp+ysnHA6Hunbtqu3bt+t3v/udkpOTVV5e7uVOz09ISIiOHj1a48/KkpIShYSE1HNXdffmm2/q/vvvV6tWrVRQUKDLL79ckydP1rhx43TDDTdo/PjxysjIOOuNE21mjHG72agxxu3GpMaiqx45SbaKlJQUdenSRc8888wZx3/3u99p06ZNWr16dT13dmGtWrVKI0eO1KeffurtVmotMDBQcXFxGjJkiPr371/jPWqq3ngPdvjhJoITJ07UbbfdpubNm3u7JY+orKxUSUmJJk+erH/84x+uRxFERUXpzjvv1NNPP62PPvrIZ2/mdvPNN6tVq1aaNWvWGccffPBBHTx4UG+99VY9d1Y3wcHBeuyxxzRx4sRqX0bz8vI0fPhwRUVFadu2bd5psI7Wrl17TnVWPG7Cq/tvLPSvf/3LBAQEmJycHHP69GnX9tOnT5vnn3/eNGrUyLzyyite7NCzKisrTUFBgenYsaPPnoNS9emwfn5+DeqpsQ3dhAkTTJcuXUxgYKDp0KGDGTVqlPnXv/7l9kAzX/TNN9+Ydu3ambCwMPPb3/7WTJ8+3UybNs3cf//9JiwszFx++eXm22+/9Xab523jxo2mUaNG5o477jAffPCB65DBe++9Z26//XbTqFEjs2HDBm+3WWvbt28/63hxcbEZOnRoPXVzcWMPyhlMnjxZWVlZCg8PV5s2beRwOPTFF1/o+PHjGj9+fI17V2wWFRV1xsvHjh8/roqKCt144436xz/+ocaNG3uhu7rZv3//j9YUFRU1uId+NTTHjx/X+vXrtWbNGq1Zs0Yffvih2rVrp+TkZKWkpPjcfTXS09O1atUqrVy5stqDHp1Op3r16qXU1FRNnz7dSx3W3dKlS/Xb3/622mMIoqKi9Pe//92aZ7rUxtChQ/Xcc88pPDzc263UG2OMVq9erdLSUnXr1k1RUVHebkkSh3hqtHnzZr388svavXu365jdoEGD9LOf/czbrZ2Xp5566ozHiiMiInT55Zc3yHuGFBcX6+WXX9acOXO0bds2K46p4tx9++23mjZtmnJyclxB2pe0bt1af//739W7d+8zji9fvlwPPvig9u3bV7+NediJEyf0zjvvaPfu3ZKkdu3aqVevXgoNDdWXX37pelK1r/D391dhYaFatGjh7VYuiKNHj+rhhx/W1q1b9fOf/1zPPvusbrrpJuXn50uSmjdvrry8PCsOiRNQqjhx4oTGjx+vf//73zp16pRSU1OVk5OjZs2aebu1OmnSpIlycnJ0zz33eLuVC+7dd9/V3Llz9dprr+nSSy/Vbbfdpttuu63GJ1TDDpWVldq8ebNrD8rGjRt1/PhxtWrVSikpKT73nKGgoCB98cUXatmy5RnHDx06pLZt2+rkyZP13NmF53Q6NWXKFL344osqLS31dju14ufnJ6fT2WADyvDhw7Vu3Trde++9evPNN+Xn5ydjjLKzs+Xn56cJEyaocePGeuONN7zdKuegVDVu3DgTGhpq7r//fjNmzBjTrFmzs964zVf89a9/NeHh4WbAgAHm66+/9nY7Hnfw4EHz1FNPmYSEBNOiRQszatQoExAQYHbu3Ont1vAjpk6davr06WMiIiKMw+EwLVu2NHfffbeZM2eO2bNnj7fbO29xcXFm/fr1NY6vW7fOxMXF1WNHnlVUVGQGDRpkmjVrZi655BLz3HPPmYqKCvPHP/7RhISEmM6dO/vkDfYcDofPn/90NnFxcWbNmjXGGGMOHTpkHA6HWb16tWv8gw8+MDExMV7qzh0BpYo2bdqYJUuWuNY/+OADExAQ4HbCrK/as2ePSUlJMTExMWbZsmXebsdj+vTpY8LDw81dd91l3nzzTdffFQHFN1xyySVm0KBB5oUXXjCff/65t9vxmKFDh5pf/vKXpqysrNrYyZMnTXJysk+fbDlixAjTsmVLM3bsWHPVVVcZPz8/06dPH5OSkuL6BeiLHA6HadKkiYmKijrr4qv8/f3NV1995VoPCQlx+39XWFhozUUFHOKpIjAwUHv37nU7bhoSEqLPPvvM55+d8YMZM2bokUce0RVXXFHtWv6tW7d6qavzFxAQoDFjxmjEiBFKTEx0bW/UqJG2b9/+o08mhXedOHFC48aN07Jly3Tq1CmlpaXp+eef9/nDqocOHVLnzp0VFBSkhx56yPW8q08++UQzZ85UWVmZtmzZ4rM/Vy699FLNmTNHaWlp2rNnj9q2basxY8YoOzvb263ViZ+fn7KzsxUZGXnWuiFDhtRTR55V9RBWeHi4tm/f7npQ5+HDhxUXF2fFOV++eaeZC6iiokKBgYFu2wICAnT69GkvdeRZ+/fv16uvvqro6GjdcsstPnuzof+2fv16zZ07V507d9bll1+ue+65R7/+9a+93RbOUUZGhhYsWKDBgwcrODhYS5Ys0YgRI/TKK694u7U6admypd577z2NHDlSkyZN0g/fBR0Oh3r27KkZM2b4bDiRvr9p5Q/hv02bNgoODm4QT2eWpDvvvLPBnoMiSS+++KLris3Tp09r/vz5ri8ENj2lmT0oVfj5+alPnz4KCgpybXvjjTfUo0cPhYWFuba99tpr3mivTl544QWNHTtWaWlp+vvf/95gboj1gxMnTig3N1dz587Vpk2bVFFRoWnTpmno0KEX1SWDvuayyy7TlClTdOedd0qSNm3apOuvv14nT56Uv7+/l7vzjKKiItdVLm3btlV0dLSXO6o7f39/OZ1O18+R8PBwffTRR0pISPByZ3XT0K/iad269Tk9sXjv3r310M3ZEVCq+M1vfnNOdb52RcGNN96oTZs2KTs7W/fee6+327ngPv30U82ZM0cvvfSSjh49qp49e+r111/3dls4g4vhsGpDVPXL3Jm+yEm+92WuoV/F40sIKBeJnj17at68eTVe8thQVVRU6I033tDcuXMJKJaq+k1cajjfxhuyhvplrqF79913NWrUKL3//vuKiIhwGysuLla3bt30t7/9Tb/4xS+81OH/R0AB4FUN+bAqYJv+/fsrJSVFjzzyyBnHn3/+ea1evVpLly6t586qI6AA8Cq+iQP159JLL9Xy5ctrvHv4rl271KtXLx04cKCeO6vO9y/hAODTCB5A/Tl8+HCNT3yXvr9q9X//93/rsaOa+f14CQAAaAh+8pOf6OOPP65x/KOPPtIll1xSjx3VjIACAMBF4qabbtJjjz12xmdAlZaW6vHHH1ffvn290Fl1nIMCAMBF4vDhw/rpT38qf39/jRo1Su3bt5fD4dB//vMf/fWvf1VFRYW2bt2qmJgYb7dKQAEA4GKyf/9+jRgxQu+8847bHY579+6tmTNnqnXr1t5t8P8QUAAAuAgVFRXp888/lzFGiYmJioqK8nZLbggoAADAOpwkCwAArENAAQAA1iGgAAAA6xBQAACAdQgoAC6YNWvWyOFw6OjRo+dU3717d6Wnp1/QngD4BgIKAI+pGjC6deumwsJCRUZGeq8pAD6JgALgggkMDFRsbKwcDodXPr+8vNwrnwug7ggoADzivvvu09q1a/Xcc8/J4XDI4XBo/vz51Q7xbNy4UcnJyQoNDVVUVJR69+6toqKiM77n8uXLFRkZqYULF0qSvvzyS/36179WVFSUmjZtqltuuUX79u1z6+HWW29VVlaW4uLi1K5duws5ZQAXEAEFgEc899xz6tq1q+6//34VFhaqsLBQ8fHxbjXbtm1TamqqrrrqKr333nvasGGD+vXrp4qKimrvl5ubq4EDB2rhwoW69957deLECaWkpKhx48Zat26dNmzYoMaNG+vGG29021OyatUq/ec//1FeXp7efPPNCz5vABdGgLcbANAwREZGKjAwUKGhoYqNjZUk7dq1y61m6tSp6ty5s2bOnOnadtVVV1V7r5kzZ+r3v/+9li1bppSUFEnfBxY/Pz+9+OKLrkNG8+bNU5MmTbRmzRr16tVLkhQWFqYXX3xRgYGBF2SeAOoHAQVAvdm2bZvuuOOOs9a8+uqrOnz4sDZs2KCf/exnru0FBQX6/PPPFR4e7lZ/8uRJffHFF671Dh06EE6ABoCAAqDehISE/GjNNddco61bt2revHm67rrrXHtLKisr1alTJ7388svVXtO8eXPXn8PCwjzXMACv4RwUAB4TGBh4xvNJfnD11Vdr1apVZ32Pyy67TKtXr9ayZcs0evRo1/af/vSn2r17t1q0aKG2bdu6LVzGDDQ8BBQAHtO6dWt98MEH2rdvn77++mtVVla6jU+aNEmbN2/WyJEj9dFHH2nXrl2aNWuWvv76a7e6du3aafXq1Xr11Vdd91UZPHiwmjVrpltuuUXr16/X3r17tXbtWj388MM6dOhQfU0RQD0hoADwmHHjxsnf319XXnmlmjdvrgMHDriNt2vXTitWrND27dv1s5/9TF27dtWyZcsUEFD9aHP79u317rvvasmSJRo7dqxCQ0O1bt06tWrVSgMGDNAVV1yhoUOHqrS0VBEREfU1RQD1xGGMMd5uAgAA4L+xBwUAAFiHgAIAAKxDQAEAANYhoAAAAOsQUAAAgHUIKAAAwDoEFAAAYB0CCgAAsA4BBQAAWIeAAgAArENAAQAA1vl/hCv0qr0d4LIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "dd_dt = dd.read_parquet(ft_glob)\n", "strat_sample_dd_dt = (dd_dt\n", @@ -173,7 +488,7 @@ ], "metadata": { "kernelspec": { - "display_name": "env", + "display_name": "dsi_participant", "language": "python", "name": "python3" }, @@ -187,7 +502,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/01_materials/labs/03b_pipeline.ipynb b/01_materials/labs/03b_pipeline.ipynb index f1027ef62..703fa143a 100644 --- a/01_materials/labs/03b_pipeline.ipynb +++ b/01_materials/labs/03b_pipeline.ipynb @@ -9,9 +9,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_18392/4071503124.py:6: DeprecationWarning: The current Dask DataFrame implementation is deprecated. \n", + "In a future release, Dask DataFrame will use new implementation that\n", + "contains several improvements including a logical query planning.\n", + "The user-facing DataFrame API will remain unchanged.\n", + "\n", + "The new implementation is already available and can be enabled by\n", + "installing the dask-expr library:\n", + "\n", + " $ pip install dask-expr\n", + "\n", + "and turning the query planning option on:\n", + "\n", + " >>> import dask\n", + " >>> dask.config.set({'dataframe.query-planning': True})\n", + " >>> import dask.dataframe as dd\n", + "\n", + "API documentation for the new implementation is available at\n", + "https://docs.dask.org/en/stable/dask-expr-api.html\n", + "\n", + "Any feedback can be reported on the Dask issue tracker\n", + "https://github.com/dask/dask/issues \n", + "\n", + " import dask.dataframe as dd\n" + ] + } + ], "source": [ "%load_ext dotenv\n", "%dotenv \n", @@ -63,9 +93,87 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
returns
count2.776708e+06
mean4.539163e-03
std3.769205e-01
min-9.982798e-01
25%-9.133833e-03
50%5.048071e-04
75%1.018515e-02
max2.498020e+02
\n", + "
" + ], + "text/plain": [ + " returns\n", + "count 2.776708e+06\n", + "mean 4.539163e-03\n", + "std 3.769205e-01\n", + "min -9.982798e-01\n", + "25% -9.133833e-03\n", + "50% 5.048071e-04\n", + "75% 1.018515e-02\n", + "max 2.498020e+02" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "returns = df[[ 'returns']].dropna()\n", "returns.describe()" @@ -73,9 +181,427 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
StandardScaler()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "StandardScaler()" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Create a StandardScaler object\n", "\n", @@ -89,9 +615,87 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
returns
count2.776708e+06
mean-6.750482e-18
std1.000000e+00
min-2.660559e+00
25%-3.627555e-02
50%-1.070347e-02
75%1.497926e-02
max6.627326e+02
\n", + "
" + ], + "text/plain": [ + " returns\n", + "count 2.776708e+06\n", + "mean -6.750482e-18\n", + "std 1.000000e+00\n", + "min -2.660559e+00\n", + "25% -3.627555e-02\n", + "50% -1.070347e-02\n", + "75% 1.497926e-02\n", + "max 6.627326e+02" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Transform the returns data using the fitted scaler\n", "\n", @@ -111,9 +715,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAJPCAYAAACQObveAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHj0lEQVR4nOzdfVzN9/8/8McpOiV1RCqRiogUQyZss1yE5fr7GVv00dBsLkLZMDMXm4uZwthsw2RCttFms7WSq4WUiCJXKWVKZimSSr1+f+zX++Pogmx6v+s87rfbud123u9X5zzOmU7P83q/LlRCCAEiIiIiHaQndwAiIiIiubAQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWfXkDqB0paWluH79OkxMTKBSqeSOQ0RERE9ACIE7d+7A2toaenqV9/uwEHqM69evw8bGRu4YRERE9BQyMjLQokWLSs+zEHoMExMTAH+/kaampjKnISIioieRl5cHGxsb6e94ZVgIPUbZ5TBTU1MWQkRERLXM44a1cLA0ERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSz6skdoK6xm7P3mT122nLPZ/bYREREuog9QkRERKSzWAgRERGRzmIhRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ66x/tNbZs2TK89957mD59OlavXg0AEEJg0aJF+Oqrr5CTk4Pu3bvjs88+Q4cOHaSfKywsxKxZs7Bjxw4UFBSgb9+++Pzzz9GiRQupTU5ODvz8/LBnzx4AwNChQ7F27Vo0atRIapOeno4pU6Zg//79MDIygpeXF1auXAkDAwOpTWJiIqZOnYrY2Fg0btwYkyZNwvz586FSqf7JS69TuD8aERHpqqfuEYqLi8NXX32Fjh07ah1fsWIFgoKCsG7dOsTFxcHKygr9+/fHnTt3pDYzZsxAWFgYQkNDER0djbt372Lw4MEoKSmR2nh5eSEhIQHh4eEIDw9HQkICvL29pfMlJSXw9PREfn4+oqOjERoail27diEgIEBqk5eXh/79+8Pa2hpxcXFYu3YtVq5ciaCgoKd92URERFSHPFWP0N27dzFmzBhs2LABH330kXRcCIHVq1dj3rx5GDlyJABgy5YtsLS0xPbt2zFp0iTk5uZi06ZN2Lp1K/r16wcACAkJgY2NDfbt24cBAwYgOTkZ4eHhiImJQffu3QEAGzZsQI8ePXDhwgU4OjoiIiIC586dQ0ZGBqytrQEAgYGB8PHxwZIlS2Bqaopt27bh/v37CA4OhlqthrOzMy5evIigoCD4+/uzV4iIiEjHPVWP0JQpU+Dp6SkVMmVSU1ORlZUFDw8P6ZharUbv3r1x9OhRAEB8fDyKi4u12lhbW8PZ2Vlqc+zYMWg0GqkIAgA3NzdoNBqtNs7OzlIRBAADBgxAYWEh4uPjpTa9e/eGWq3WanP9+nWkpaVV+NoKCwuRl5endSMiIqK6qdqFUGhoKE6ePIlly5aVO5eVlQUAsLS01DpuaWkpncvKyoKBgQHMzMyqbGNhYVHu8S0sLLTaPPo8ZmZmMDAwqLJN2f2yNo9atmwZNBqNdLOxsamwHREREdV+1SqEMjIyMH36dISEhMDQ0LDSdo9echJCPPYy1KNtKmr/b7QRQlT6swAwd+5c5ObmSreMjIwqcxMREVHtVa1CKD4+HtnZ2ejatSvq1auHevXq4dChQ/j0009Rr169SntbsrOzpXNWVlYoKipCTk5OlW1u3LhR7vlv3ryp1ebR58nJyUFxcXGVbbKzswGU77Uqo1arYWpqqnUjIiKiuqlahVDfvn2RmJiIhIQE6ebq6ooxY8YgISEBrVq1gpWVFSIjI6WfKSoqwqFDh9CzZ08AQNeuXVG/fn2tNpmZmUhKSpLa9OjRA7m5uYiNjZXaHD9+HLm5uVptkpKSkJmZKbWJiIiAWq1G165dpTaHDx9GUVGRVhtra2vY2dlV56UTERFRHVStWWMmJiZwdnbWOmZsbIwmTZpIx2fMmIGlS5eiTZs2aNOmDZYuXYoGDRrAy8sLAKDRaDBhwgQEBASgSZMmaNy4MWbNmgUXFxdp8HX79u0xcOBA+Pr64ssvvwQAvPnmmxg8eDAcHR0BAB4eHnBycoK3tzc++eQT/PXXX5g1axZ8fX2lXhwvLy8sWrQIPj4+eO+993Dp0iUsXboUH3zwAWeMERER0T9bULEi7777LgoKCjB58mRpQcWIiAiYmJhIbVatWoV69eph1KhR0oKKwcHB0NfXl9ps27YNfn5+0uyyoUOHYt26ddJ5fX197N27F5MnT0avXr20FlQso9FoEBkZiSlTpsDV1RVmZmbw9/eHv7//v/2yiYiIqBZSibLRw1ShvLw8aDQa5ObmPtF4odq4SnNtzExERFSVJ/37zb3GiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIinVVP7gBET8Nuzt5n9thpyz2f2WMTEZGysEeIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIinVWtQmj9+vXo2LEjTE1NYWpqih49euDXX3+Vzvv4+EClUmnd3NzctB6jsLAQ06ZNg7m5OYyNjTF06FBcu3ZNq01OTg68vb2h0Wig0Wjg7e2N27dva7VJT0/HkCFDYGxsDHNzc/j5+aGoqEirTWJiInr37g0jIyM0b94cixcvhhCiOi+ZiIiI6rBqrSzdokULLF++HA4ODgCALVu2YNiwYTh16hQ6dOgAABg4cCA2b94s/YyBgYHWY8yYMQM//fQTQkND0aRJEwQEBGDw4MGIj4+Hvr4+AMDLywvXrl1DeHg4AODNN9+Et7c3fvrpJwBASUkJPD090bRpU0RHR+PWrVsYN24chBBYu3YtACAvLw/9+/eHu7s74uLicPHiRfj4+MDY2BgBAQFP814R/WPPakVsroZNRPR0qlUIDRkyROv+kiVLsH79esTExEiFkFqthpWVVYU/n5ubi02bNmHr1q3o168fACAkJAQ2NjbYt28fBgwYgOTkZISHhyMmJgbdu3cHAGzYsAE9evTAhQsX4OjoiIiICJw7dw4ZGRmwtrYGAAQGBsLHxwdLliyBqakptm3bhvv37yM4OBhqtRrOzs64ePEigoKC4O/vD5VKVb13ioiIiOqcpx4jVFJSgtDQUOTn56NHjx7S8YMHD8LCwgJt27aFr68vsrOzpXPx8fEoLi6Gh4eHdMza2hrOzs44evQoAODYsWPQaDRSEQQAbm5u0Gg0Wm2cnZ2lIggABgwYgMLCQsTHx0ttevfuDbVardXm+vXrSEtLq/R1FRYWIi8vT+tGREREdVO1C6HExEQ0bNgQarUab731FsLCwuDk5AQAGDRoELZt24b9+/cjMDAQcXFx6NOnDwoLCwEAWVlZMDAwgJmZmdZjWlpaIisrS2pjYWFR7nktLCy02lhaWmqdNzMzg4GBQZVtyu6XtanIsmXLpLFJGo0GNjY2T/zeEBERUe1S7d3nHR0dkZCQgNu3b2PXrl0YN24cDh06BCcnJ4wePVpq5+zsDFdXV9ja2mLv3r0YOXJkpY8phNC6VFXRZat/o03ZQOmqLovNnTsX/v7+0v28vDwWQ0RERHVUtXuEDAwM4ODgAFdXVyxbtgydOnXCmjVrKmzbrFkz2Nra4tKlSwAAKysrFBUVIScnR6tddna21FtjZWWFGzdulHusmzdvarV5tFcnJycHxcXFVbYpu0z3aE/Rw9RqtTQrruxGREREddM/XkdICCFd+nrUrVu3kJGRgWbNmgEAunbtivr16yMyMlJqk5mZiaSkJPTs2RMA0KNHD+Tm5iI2NlZqc/z4ceTm5mq1SUpKQmZmptQmIiICarUaXbt2ldocPnxYa0p9REQErK2tYWdn909fNhEREdUB1SqE3nvvPfz+++9IS0tDYmIi5s2bh4MHD2LMmDG4e/cuZs2ahWPHjiEtLQ0HDx7EkCFDYG5ujhEjRgAANBoNJkyYgICAAERFReHUqVMYO3YsXFxcpFlk7du3x8CBA+Hr64uYmBjExMTA19cXgwcPhqOjIwDAw8MDTk5O8Pb2xqlTpxAVFYVZs2bB19dX6sHx8vKCWq2Gj48PkpKSEBYWhqVLl3LGGBEREUmqNUboxo0b8Pb2RmZmJjQaDTp27Ijw8HD0798fBQUFSExMxDfffIPbt2+jWbNmcHd3x86dO2FiYiI9xqpVq1CvXj2MGjUKBQUF6Nu3L4KDg6U1hABg27Zt8PPzk2aXDR06FOvWrZPO6+vrY+/evZg8eTJ69eoFIyMjeHl5YeXKlVIbjUaDyMhITJkyBa6urjAzM4O/v7/W+B8iIiLSbSrBpZarlJeXB41Gg9zc3CcaL/SsFswDnt2iecys7VkuTsgFFYmIasaT/v3mXmNERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqrWoXQ+vXr0bFjR5iamsLU1BQ9evTAr7/+Kp0XQmDhwoWwtraGkZERXn75ZZw9e1brMQoLCzFt2jSYm5vD2NgYQ4cOxbVr17Ta5OTkwNvbGxqNBhqNBt7e3rh9+7ZWm/T0dAwZMgTGxsYwNzeHn58fioqKtNokJiaid+/eMDIyQvPmzbF48WIIIarzkomIiKgOq1Yh1KJFCyxfvhwnTpzAiRMn0KdPHwwbNkwqdlasWIGgoCCsW7cOcXFxsLKyQv/+/XHnzh3pMWbMmIGwsDCEhoYiOjoad+/exeDBg1FSUiK18fLyQkJCAsLDwxEeHo6EhAR4e3tL50tKSuDp6Yn8/HxER0cjNDQUu3btQkBAgNQmLy8P/fv3h7W1NeLi4rB27VqsXLkSQUFBT/1mERERUd1SrzqNhwwZonV/yZIlWL9+PWJiYuDk5ITVq1dj3rx5GDlyJABgy5YtsLS0xPbt2zFp0iTk5uZi06ZN2Lp1K/r16wcACAkJgY2NDfbt24cBAwYgOTkZ4eHhiImJQffu3QEAGzZsQI8ePXDhwgU4OjoiIiIC586dQ0ZGBqytrQEAgYGB8PHxwZIlS2Bqaopt27bh/v37CA4OhlqthrOzMy5evIigoCD4+/tDpVL94zePiIiIarenHiNUUlKC0NBQ5Ofno0ePHkhNTUVWVhY8PDykNmq1Gr1798bRo0cBAPHx8SguLtZqY21tDWdnZ6nNsWPHoNFopCIIANzc3KDRaLTaODs7S0UQAAwYMACFhYWIj4+X2vTu3RtqtVqrzfXr15GWllbp6yosLEReXp7WjYiIiOqmahdCiYmJaNiwIdRqNd566y2EhYXByckJWVlZAABLS0ut9paWltK5rKwsGBgYwMzMrMo2FhYW5Z7XwsJCq82jz2NmZgYDA4Mq25TdL2tTkWXLlkljkzQaDWxsbKp+Q4iIiKjWqnYh5OjoiISEBMTExODtt9/GuHHjcO7cOen8o5echBCPvQz1aJuK2v8bbcoGSleVZ+7cucjNzZVuGRkZVWYnIiKi2qvahZCBgQEcHBzg6uqKZcuWoVOnTlizZg2srKwAlO9tyc7OlnpirKysUFRUhJycnCrb3Lhxo9zz3rx5U6vNo8+Tk5OD4uLiKttkZ2cDKN9r9TC1Wi3Niiu7ERERUd30j9cREkKgsLAQ9vb2sLKyQmRkpHSuqKgIhw4dQs+ePQEAXbt2Rf369bXaZGZmIikpSWrTo0cP5ObmIjY2Vmpz/Phx5ObmarVJSkpCZmam1CYiIgJqtRpdu3aV2hw+fFhrSn1ERASsra1hZ2f3T182ERER1QHVKoTee+89/P7770hLS0NiYiLmzZuHgwcPYsyYMVCpVJgxYwaWLl2KsLAwJCUlwcfHBw0aNICXlxcAQKPRYMKECQgICEBUVBROnTqFsWPHwsXFRZpF1r59ewwcOBC+vr6IiYlBTEwMfH19MXjwYDg6OgIAPDw84OTkBG9vb5w6dQpRUVGYNWsWfH19pR4cLy8vqNVq+Pj4ICkpCWFhYVi6dClnjBEREZGkWtPnb9y4AW9vb2RmZkKj0aBjx44IDw9H//79AQDvvvsuCgoKMHnyZOTk5KB79+6IiIiAiYmJ9BirVq1CvXr1MGrUKBQUFKBv374IDg6Gvr6+1Gbbtm3w8/OTZpcNHToU69atk87r6+tj7969mDx5Mnr16gUjIyN4eXlh5cqVUhuNRoPIyEhMmTIFrq6uMDMzg7+/P/z9/Z/unSIiIqI6RyW41HKV8vLyoNFokJub+0Tjhezm7H1mWdKWez6Tx2Vmbc8qM/Dscj/LzEREtdGT/v2uVo8QEekeFm9EVJdx01UiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ1WrEFq2bBm6desGExMTWFhYYPjw4bhw4YJWGx8fH6hUKq2bm5ubVpvCwkJMmzYN5ubmMDY2xtChQ3Ht2jWtNjk5OfD29oZGo4FGo4G3tzdu376t1SY9PR1DhgyBsbExzM3N4efnh6KiIq02iYmJ6N27N4yMjNC8eXMsXrwYQojqvGwiIiKqo6pVCB06dAhTpkxBTEwMIiMj8eDBA3h4eCA/P1+r3cCBA5GZmSndfvnlF63zM2bMQFhYGEJDQxEdHY27d+9i8ODBKCkpkdp4eXkhISEB4eHhCA8PR0JCAry9vaXzJSUl8PT0RH5+PqKjoxEaGopdu3YhICBAapOXl4f+/fvD2toacXFxWLt2LVauXImgoKBqvUlERERUN9WrTuPw8HCt+5s3b4aFhQXi4+Px0ksvScfVajWsrKwqfIzc3Fxs2rQJW7duRb9+/QAAISEhsLGxwb59+zBgwAAkJycjPDwcMTEx6N69OwBgw4YN6NGjBy5cuABHR0dERETg3LlzyMjIgLW1NQAgMDAQPj4+WLJkCUxNTbFt2zbcv38fwcHBUKvVcHZ2xsWLFxEUFAR/f3+oVKrqvHwiIiKqY/7RGKHc3FwAQOPGjbWOHzx4EBYWFmjbti18fX2RnZ0tnYuPj0dxcTE8PDykY9bW1nB2dsbRo0cBAMeOHYNGo5GKIABwc3ODRqPRauPs7CwVQQAwYMAAFBYWIj4+XmrTu3dvqNVqrTbXr19HWlpaha+psLAQeXl5WjciIiKqm566EBJCwN/fHy+88AKcnZ2l44MGDcK2bduwf/9+BAYGIi4uDn369EFhYSEAICsrCwYGBjAzM9N6PEtLS2RlZUltLCwsyj2nhYWFVhtLS0ut82ZmZjAwMKiyTdn9sjaPWrZsmTQuSaPRwMbG5onfEyIiIqpdqnVp7GFTp07FmTNnEB0drXV89OjR0n87OzvD1dUVtra22Lt3L0aOHFnp4wkhtC5VVXTZ6t9oUzZQurLLYnPnzoW/v790Py8vj8UQERFRHfVUPULTpk3Dnj17cODAAbRo0aLKts2aNYOtrS0uXboEALCyskJRURFycnK02mVnZ0u9NVZWVrhx40a5x7p586ZWm0d7dXJyclBcXFxlm7LLdI/2FJVRq9UwNTXVuhEREVHdVK1CSAiBqVOnYvfu3di/fz/s7e0f+zO3bt1CRkYGmjVrBgDo2rUr6tevj8jISKlNZmYmkpKS0LNnTwBAjx49kJubi9jYWKnN8ePHkZubq9UmKSkJmZmZUpuIiAio1Wp07dpVanP48GGtKfURERGwtraGnZ1ddV46ERER1UHVKoSmTJmCkJAQbN++HSYmJsjKykJWVhYKCgoAAHfv3sWsWbNw7NgxpKWl4eDBgxgyZAjMzc0xYsQIAIBGo8GECRMQEBCAqKgonDp1CmPHjoWLi4s0i6x9+/YYOHAgfH19ERMTg5iYGPj6+mLw4MFwdHQEAHh4eMDJyQne3t44deoUoqKiMGvWLPj6+kq9OF5eXlCr1fDx8UFSUhLCwsKwdOlSzhgjIiIiANUshNavX4/c3Fy8/PLLaNasmXTbuXMnAEBfXx+JiYkYNmwY2rZti3HjxqFt27Y4duwYTExMpMdZtWoVhg8fjlGjRqFXr15o0KABfvrpJ+jr60tttm3bBhcXF3h4eMDDwwMdO3bE1q1bpfP6+vrYu3cvDA0N0atXL4waNQrDhw/HypUrpTYajQaRkZG4du0aXF1dMXnyZPj7+2uNASIiIiLdVa3B0o9bkdnIyAi//fbbYx/H0NAQa9euxdq1aytt07hxY4SEhFT5OC1btsTPP/9cZRsXFxccPnz4sZmIiIhI93CvMSIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp1VT+4ARET/Nrs5e5/J46Yt93wmj0tE8mGPEBEREeksFkJERESks1gIERERkc6qViG0bNkydOvWDSYmJrCwsMDw4cNx4cIFrTZCCCxcuBDW1tYwMjLCyy+/jLNnz2q1KSwsxLRp02Bubg5jY2MMHToU165d02qTk5MDb29vaDQaaDQaeHt74/bt21pt0tPTMWTIEBgbG8Pc3Bx+fn4oKirSapOYmIjevXvDyMgIzZs3x+LFiyGEqM7LJiIiojqqWoXQoUOHMGXKFMTExCAyMhIPHjyAh4cH8vPzpTYrVqxAUFAQ1q1bh7i4OFhZWaF///64c+eO1GbGjBkICwtDaGgooqOjcffuXQwePBglJSVSGy8vLyQkJCA8PBzh4eFISEiAt7e3dL6kpASenp7Iz89HdHQ0QkNDsWvXLgQEBEht8vLy0L9/f1hbWyMuLg5r167FypUrERQU9FRvFhEREdUt1Zo1Fh4ernV/8+bNsLCwQHx8PF566SUIIbB69WrMmzcPI0eOBABs2bIFlpaW2L59OyZNmoTc3Fxs2rQJW7duRb9+/QAAISEhsLGxwb59+zBgwAAkJycjPDwcMTEx6N69OwBgw4YN6NGjBy5cuABHR0dERETg3LlzyMjIgLW1NQAgMDAQPj4+WLJkCUxNTbFt2zbcv38fwcHBUKvVcHZ2xsWLFxEUFAR/f3+oVKp//AYSERFR7fWPxgjl5uYCABo3bgwASE1NRVZWFjw8PKQ2arUavXv3xtGjRwEA8fHxKC4u1mpjbW0NZ2dnqc2xY8eg0WikIggA3NzcoNFotNo4OztLRRAADBgwAIWFhYiPj5fa9O7dG2q1WqvN9evXkZaWVuFrKiwsRF5entaNiIiI6qanLoSEEPD398cLL7wAZ2dnAEBWVhYAwNLSUqutpaWldC4rKwsGBgYwMzOrso2FhUW557SwsNBq8+jzmJmZwcDAoMo2ZffL2jxq2bJl0rgkjUYDGxubx7wTREREVFs9dSE0depUnDlzBjt27Ch37tFLTkKIx16GerRNRe3/jTZlA6UryzN37lzk5uZKt4yMjCpzExERUe31VIXQtGnTsGfPHhw4cAAtWrSQjltZWQEo39uSnZ0t9cRYWVmhqKgIOTk5Vba5ceNGuee9efOmVptHnycnJwfFxcVVtsnOzgZQvteqjFqthqmpqdaNiIiI6qZqFUJCCEydOhW7d+/G/v37YW9vr3Xe3t4eVlZWiIyMlI4VFRXh0KFD6NmzJwCga9euqF+/vlabzMxMJCUlSW169OiB3NxcxMbGSm2OHz+O3NxcrTZJSUnIzMyU2kRERECtVqNr165Sm8OHD2tNqY+IiIC1tTXs7Oyq89KJiIioDqpWITRlyhSEhIRg+/btMDExQVZWFrKyslBQUADg78tNM2bMwNKlSxEWFoakpCT4+PigQYMG8PLyAgBoNBpMmDABAQEBiIqKwqlTpzB27Fi4uLhIs8jat2+PgQMHwtfXFzExMYiJiYGvry8GDx4MR0dHAICHhwecnJzg7e2NU6dOISoqCrNmzYKvr6/Ui+Pl5QW1Wg0fHx8kJSUhLCwMS5cu5YwxIiIiAlDN6fPr168HALz88staxzdv3gwfHx8AwLvvvouCggJMnjwZOTk56N69OyIiImBiYiK1X7VqFerVq4dRo0ahoKAAffv2RXBwMPT19aU227Ztg5+fnzS7bOjQoVi3bp10Xl9fH3v37sXkyZPRq1cvGBkZwcvLCytXrpTaaDQaREZGYsqUKXB1dYWZmRn8/f3h7+9fnZdNREREdVS1CqEnWZFZpVJh4cKFWLhwYaVtDA0NsXbtWqxdu7bSNo0bN0ZISEiVz9WyZUv8/PPPVbZxcXHB4cOHq2xDREREuol7jREREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLhRARERHprGrtNUZERM+G3Zy9z+Rx05Z7PpPHJaor2CNEREREOouFEBEREeksFkJERESkszhGiIiIngrHNVFdwB4hIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIinVXtQujw4cMYMmQIrK2toVKp8MMPP2id9/HxgUql0rq5ublptSksLMS0adNgbm4OY2NjDB06FNeuXdNqk5OTA29vb2g0Gmg0Gnh7e+P27dtabdLT0zFkyBAYGxvD3Nwcfn5+KCoq0mqTmJiI3r17w8jICM2bN8fixYshhKjuyyYiIqI6qNqFUH5+Pjp16oR169ZV2mbgwIHIzMyUbr/88ovW+RkzZiAsLAyhoaGIjo7G3bt3MXjwYJSUlEhtvLy8kJCQgPDwcISHhyMhIQHe3t7S+ZKSEnh6eiI/Px/R0dEIDQ3Frl27EBAQILXJy8tD//79YW1tjbi4OKxduxYrV65EUFBQdV82ERER1UH1qvsDgwYNwqBBg6pso1arYWVlVeG53NxcbNq0CVu3bkW/fv0AACEhIbCxscG+ffswYMAAJCcnIzw8HDExMejevTsAYMOGDejRowcuXLgAR0dHRERE4Ny5c8jIyIC1tTUAIDAwED4+PliyZAlMTU2xbds23L9/H8HBwVCr1XB2dsbFixcRFBQEf39/qFSq6r58IiIiqkOeyRihgwcPwsLCAm3btoWvry+ys7Olc/Hx8SguLoaHh4d0zNraGs7Ozjh69CgA4NixY9BoNFIRBABubm7QaDRabZydnaUiCAAGDBiAwsJCxMfHS2169+4NtVqt1eb69etIS0urMHthYSHy8vK0bkRERFQ3VbtH6HEGDRqEV199Fba2tkhNTcX8+fPRp08fxMfHQ61WIysrCwYGBjAzM9P6OUtLS2RlZQEAsrKyYGFhUe6xLSwstNpYWlpqnTczM4OBgYFWGzs7u3LPU3bO3t6+3HMsW7YMixYteroXT0REimY3Z+8ze+y05Z7P7LHp2fnXC6HRo0dL/+3s7AxXV1fY2tpi7969GDlyZKU/J4TQulRV0WWrf6NN2UDpyi6LzZ07F/7+/tL9vLw82NjYVJqbiIiIaq9nPn2+WbNmsLW1xaVLlwAAVlZWKCoqQk5Ojla77OxsqbfGysoKN27cKPdYN2/e1GpT1vNTJicnB8XFxVW2KbtM92hvUhm1Wg1TU1OtGxEREdVNz7wQunXrFjIyMtCsWTMAQNeuXVG/fn1ERkZKbTIzM5GUlISePXsCAHr06IHc3FzExsZKbY4fP47c3FytNklJScjMzJTaREREQK1Wo2vXrlKbw4cPa02pj4iIgLW1dblLZkRERKR7ql0I3b17FwkJCUhISAAApKamIiEhAenp6bh79y5mzZqFY8eOIS0tDQcPHsSQIUNgbm6OESNGAAA0Gg0mTJiAgIAAREVF4dSpUxg7dixcXFykWWTt27fHwIED4evri5iYGMTExMDX1xeDBw+Go6MjAMDDwwNOTk7w9vbGqVOnEBUVhVmzZsHX11fqxfHy8oJarYaPjw+SkpIQFhaGpUuXcsYYERERAXiKMUInTpyAu7u7dL9sPM24ceOwfv16JCYm4ptvvsHt27fRrFkzuLu7Y+fOnTAxMZF+ZtWqVahXrx5GjRqFgoIC9O3bF8HBwdDX15fabNu2DX5+ftLssqFDh2qtXaSvr4+9e/di8uTJ6NWrF4yMjODl5YWVK1dKbTQaDSIjIzFlyhS4urrCzMwM/v7+WmOAiIiISHdVuxB6+eWXq1yZ+bfffnvsYxgaGmLt2rVYu3ZtpW0aN26MkJCQKh+nZcuW+Pnnn6ts4+LigsOHDz82ExEREeke7jVGREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc6qJ3cAIiIiqpzdnL3P7LHTlns+s8euLdgjRERERDqLhRARERHpLBZCREREpLNYCBEREZHOYiFEREREOouFEBEREeksFkJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkRERKSzWAgRERGRzmIhRERERDqLu88TERHRv8puzt5n9thpyz3/1cerdo/Q4cOHMWTIEFhbW0OlUuGHH37QOi+EwMKFC2FtbQ0jIyO8/PLLOHv2rFabwsJCTJs2Debm5jA2NsbQoUNx7do1rTY5OTnw9vaGRqOBRqOBt7c3bt++rdUmPT0dQ4YMgbGxMczNzeHn54eioiKtNomJiejduzeMjIzQvHlzLF68GEKI6r5sIiIiqoOqXQjl5+ejU6dOWLduXYXnV6xYgaCgIKxbtw5xcXGwsrJC//79cefOHanNjBkzEBYWhtDQUERHR+Pu3bsYPHgwSkpKpDZeXl5ISEhAeHg4wsPDkZCQAG9vb+l8SUkJPD09kZ+fj+joaISGhmLXrl0ICAiQ2uTl5aF///6wtrZGXFwc1q5di5UrVyIoKKi6L5uIiIjqoGpfGhs0aBAGDRpU4TkhBFavXo158+Zh5MiRAIAtW7bA0tIS27dvx6RJk5Cbm4tNmzZh69at6NevHwAgJCQENjY22LdvHwYMGIDk5GSEh4cjJiYG3bt3BwBs2LABPXr0wIULF+Do6IiIiAicO3cOGRkZsLa2BgAEBgbCx8cHS5YsgampKbZt24b79+8jODgYarUazs7OuHjxIoKCguDv7w+VSvVUbxoRERHVDf/qYOnU1FRkZWXBw8NDOqZWq9G7d28cPXoUABAfH4/i4mKtNtbW1nB2dpbaHDt2DBqNRiqCAMDNzQ0ajUarjbOzs1QEAcCAAQNQWFiI+Ph4qU3v3r2hVqu12ly/fh1paWkVvobCwkLk5eVp3YiIiKhu+lcLoaysLACApaWl1nFLS0vpXFZWFgwMDGBmZlZlGwsLi3KPb2FhodXm0ecxMzODgYFBlW3K7pe1edSyZcukcUkajQY2NjaPf+FERERUKz2T6fOPXnISQjz2MtSjbSpq/2+0KRsoXVmeuXPnIjc3V7plZGRUmZuIiIhqr3+1ELKysgJQvrclOztb6omxsrJCUVERcnJyqmxz48aNco9/8+ZNrTaPPk9OTg6Ki4urbJOdnQ2gfK9VGbVaDVNTU60bERER1U3/aiFkb28PKysrREZGSseKiopw6NAh9OzZEwDQtWtX1K9fX6tNZmYmkpKSpDY9evRAbm4uYmNjpTbHjx9Hbm6uVpukpCRkZmZKbSIiIqBWq9G1a1epzeHDh7Wm1EdERMDa2hp2dnb/5ksnIiKiWqjahdDdu3eRkJCAhIQEAH8PkE5ISEB6ejpUKhVmzJiBpUuXIiwsDElJSfDx8UGDBg3g5eUFANBoNJgwYQICAgIQFRWFU6dOYezYsXBxcZFmkbVv3x4DBw6Er68vYmJiEBMTA19fXwwePBiOjo4AAA8PDzg5OcHb2xunTp1CVFQUZs2aBV9fX6kXx8vLC2q1Gj4+PkhKSkJYWBiWLl3KGWNEREQE4Cmmz584cQLu7u7SfX9/fwDAuHHjEBwcjHfffRcFBQWYPHkycnJy0L17d0RERMDExET6mVWrVqFevXoYNWoUCgoK0LdvXwQHB0NfX19qs23bNvj5+Umzy4YOHaq1dpG+vj727t2LyZMno1evXjAyMoKXlxdWrlwptdFoNIiMjMSUKVPg6uoKMzMz+Pv7S5mJiIhIt1W7EHr55ZerXJlZpVJh4cKFWLhwYaVtDA0NsXbtWqxdu7bSNo0bN0ZISEiVWVq2bImff/65yjYuLi44fPhwlW2IiIhIN3HTVSIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIinfWvF0ILFy6ESqXSullZWUnnhRBYuHAhrK2tYWRkhJdffhlnz57VeozCwkJMmzYN5ubmMDY2xtChQ3Ht2jWtNjk5OfD29oZGo4FGo4G3tzdu376t1SY9PR1DhgyBsbExzM3N4efnh6Kion/7JRMREVEt9Ux6hDp06IDMzEzplpiYKJ1bsWIFgoKCsG7dOsTFxcHKygr9+/fHnTt3pDYzZsxAWFgYQkNDER0djbt372Lw4MEoKSmR2nh5eSEhIQHh4eEIDw9HQkICvL29pfMlJSXw9PREfn4+oqOjERoail27diEgIOBZvGQiIiKqheo9kwetV0+rF6iMEAKrV6/GvHnzMHLkSADAli1bYGlpie3bt2PSpEnIzc3Fpk2bsHXrVvTr1w8AEBISAhsbG+zbtw8DBgxAcnIywsPDERMTg+7duwMANmzYgB49euDChQtwdHREREQEzp07h4yMDFhbWwMAAgMD4ePjgyVLlsDU1PRZvHQiIiKqRZ5Jj9ClS5dgbW0Ne3t7vPbaa7hy5QoAIDU1FVlZWfDw8JDaqtVq9O7dG0ePHgUAxMfHo7i4WKuNtbU1nJ2dpTbHjh2DRqORiiAAcHNzg0aj0Wrj7OwsFUEAMGDAABQWFiI+Pr7S7IWFhcjLy9O6ERERUd30rxdC3bt3xzfffIPffvsNGzZsQFZWFnr27Ilbt24hKysLAGBpaan1M5aWltK5rKwsGBgYwMzMrMo2FhYW5Z7bwsJCq82jz2NmZgYDAwOpTUWWLVsmjTvSaDSwsbGp5jtAREREtcW/XggNGjQI//d//wcXFxf069cPe/fuBfD3JbAyKpVK62eEEOWOPerRNhW1f5o2j5o7dy5yc3OlW0ZGRpW5iIiIqPZ65tPnjY2N4eLigkuXLknjhh7tkcnOzpZ6b6ysrFBUVIScnJwq29y4caPcc928eVOrzaPPk5OTg+Li4nI9RQ9Tq9UwNTXVuhEREVHd9MwLocLCQiQnJ6NZs2awt7eHlZUVIiMjpfNFRUU4dOgQevbsCQDo2rUr6tevr9UmMzMTSUlJUpsePXogNzcXsbGxUpvjx48jNzdXq01SUhIyMzOlNhEREVCr1ejateszfc1ERERUO/zrs8ZmzZqFIUOGoGXLlsjOzsZHH32EvLw8jBs3DiqVCjNmzMDSpUvRpk0btGnTBkuXLkWDBg3g5eUFANBoNJgwYQICAgLQpEkTNG7cGLNmzZIutQFA+/btMXDgQPj6+uLLL78EALz55psYPHgwHB0dAQAeHh5wcnKCt7c3PvnkE/z111+YNWsWfH192ctDREREAJ5BIXTt2jW8/vrr+PPPP9G0aVO4ubkhJiYGtra2AIB3330XBQUFmDx5MnJyctC9e3dERETAxMREeoxVq1ahXr16GDVqFAoKCtC3b18EBwdDX19farNt2zb4+flJs8uGDh2KdevWSef19fWxd+9eTJ48Gb169YKRkRG8vLywcuXKf/slExERUS31rxdCoaGhVZ5XqVRYuHAhFi5cWGkbQ0NDrF27FmvXrq20TePGjRESElLlc7Vs2RI///xzlW2IiIhId3GvMSIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIincVCiIiIiHQWCyEiIiLSWSyEiIiISGexECIiIiKdxUKIiIiIdBYLISIiItJZLISIiIhIZ7EQIiIiIp3FQoiIiIh0FgshIiIi0lkshIiIiEhnsRAiIiIinaUThdDnn38Oe3t7GBoaomvXrvj999/ljkREREQKUOcLoZ07d2LGjBmYN28eTp06hRdffBGDBg1Cenq63NGIiIhIZnW+EAoKCsKECRMwceJEtG/fHqtXr4aNjQ3Wr18vdzQiIiKSWT25AzxLRUVFiI+Px5w5c7SOe3h44OjRoxX+TGFhIQoLC6X7ubm5AIC8vLwnes7SwntPmfbxnjRDdTGztmeVGXh2uZlZGzP/DzNrq42fHcys7Ukzl7UTQlTdUNRhf/zxhwAgjhw5onV8yZIlom3bthX+zIIFCwQA3njjjTfeeOOtDtwyMjKqrBXqdI9QGZVKpXVfCFHuWJm5c+fC399ful9aWoq//voLTZo0qfRnnlZeXh5sbGyQkZEBU1PTf/WxnxVmrhnMXDOYuWYwc81gZm1CCNy5cwfW1tZVtqvThZC5uTn09fWRlZWldTw7OxuWlpYV/oxarYZardY61qhRo2cVEQBgampaa/7RlmHmmsHMNYOZawYz1wxm/h+NRvPYNnV6sLSBgQG6du2KyMhIreORkZHo2bOnTKmIiIhIKep0jxAA+Pv7w9vbG66urujRowe++uorpKen46233pI7GhEREcmszhdCo0ePxq1bt7B48WJkZmbC2dkZv/zyC2xtbeWOBrVajQULFpS7FKdkzFwzmLlmMHPNYOaawcxPRyXE4+aVEREREdVNdXqMEBEREVFVWAgRERGRzmIhRERERDqLhRARERHpLBZCRAqQmpoqd4Rqy8/PlzsCEdE/xkKI6qSUlBS8//77eP3115GdnQ0ACA8Px9mzZ2VOVjEHBwe4u7sjJCQE9+/flzvOE7G0tMT48eMRHR0td5QnlpGRgWvXrkn3Y2NjMWPGDHz11Vcypqqbfv/9d4wdOxY9evTAH3/8AQDYunVrrfr3Qv8+Jf4OshCixyooKMC9e//bSfjq1atYvXo1IiIiZExVuUOHDsHFxQXHjx/H7t27cffuXQDAmTNnsGDBApnTVez06dPo3LkzAgICYGVlhUmTJiE2NlbuWFXasWMHcnNz0bdvX7Rt2xbLly/H9evX5Y5VJS8vLxw4cAAAkJWVhf79+yM2NhbvvfceFi9eLHO6umPXrl0YMGAAjIyMcOrUKRQWFgIA7ty5g6VLl8qcrnpKSkqQkJCAnJwcuaNUqjb1ziryd/Bf2eadnlh6errWTrjHjx8X06dPF19++aWMqarWv39/sX79eiGEEDk5OcLS0lK0aNFCGBoais8//1zmdOW5ubmJwMBAIYQQDRs2FCkpKUIIIWJjY4W1tbWc0R6ruLhY7N69WwwdOlTUr19fODk5icDAQJGdnS13tEr9+eefIigoSHTs2FHUq1dPeHp6il27doni4mK5o5XTqFEjcf78eSGEEGvWrBE9e/YUQgjx22+/CXt7ezmjVSk+Pl6cOXNGuv/DDz+IYcOGiblz54rCwkIZk1XsueeeE1u2bBFCaP8Onjp1SlhaWsoZ7bGmT58uNm7cKIQQ4sGDB6JXr15CpVIJY2NjceDAAXnDVcLY2Fi88cYb4vfff5c7ymMp8XeQhVANe+GFF8Q333wjhBAiMzNTmJqaih49eogmTZqIRYsWyZyuYk2aNBFJSUlCCCE2bNggOnbsKEpKSsS3334r2rVrJ3O68oyNjcWVK1eEENofwqmpqUKtVssZ7Yndv39fBAUFCbVaLVQqlTAwMBDe3t7i+vXrcker0qeffiplbtq0qZg/f77Iz8+XO5bE2NhYpKamCiGEGDJkiFi+fLkQQoirV68KQ0NDGZNVzdXVVXz//fdCCCFSUlKEoaGheP3114WDg4OYPn26vOEqYGRkJL3PD/8OpqSkKP53sHnz5iIuLk4IIURYWJiwtrYWFy5cEPPmzZP+aCvNnj17xMiRI4WBgYFo06aNWLZsmfjjjz/kjlUhJf4O8tJYDUtKSsLzzz8PAPj222/h7OyMo0ePYvv27QgODpY3XCXu3bsHExMTAEBERARGjhwJPT09uLm54erVqzKnK69Ro0bIzMwsd/zUqVNo3ry5DIme3IkTJzB58mQ0a9YMQUFBmDVrFlJSUrB//3788ccfGDZsmNwRy8nKysKKFSvQvn17zJkzB//5z38QFRWFVatWISwsDMOHD5c7oqRDhw744osv8PvvvyMyMhIDBw4EAFy/fh1NmjSROV3lLl68iOeeew4A8N133+Gll16SPjN27dolb7gKNGvWDJcvXy53PDo6Gq1atZIh0ZP7888/YWVlBQD45Zdf8Oqrr6Jt27aYMGECEhMTZU5XsSFDhmDXrl24fv063n77bezYsQO2trYYPHgwdu/ejQcPHsgdUaLI30FZyi8dpsRq+HFcXFzEmjVrRHp6ujA1NRVHjx4VQghx4sQJRXZzv/POO+KFF14QmZmZwsTERFy6dElER0eLVq1aiYULF8odr0KBgYHC2dlZ1K9fXwwbNkz89NNPoqSkRKvNpUuXhL6+vkwJy9u1a5cYPHiwqF+/vujUqZNYu3atyMnJ0WqTlJQk6tevL0/AChw4cEA0atRI6OnpiTfeeEM6PnfuXDFixAgZk1XNxMREXLx4UQghRL9+/cTq1auFEMr93Pj444+Fk5OTiImJESYmJuL3338XISEhomnTpmLt2rVyx6tSy5YtxW+//SYePHggbGxsxE8//SSE+PvfcqNGjWRO9+SU2jurxN9BFkI17PnnnxezZ88Whw8fFoaGhiIhIUEIIcSxY8dE8+bNZU5Xse+++07Ur19f6Onpif79+0vHly5dKgYOHChjsooVFRUJLy8voaenJ1QqlZR97Nix4sGDB3LHq5CDg4NYunSpyMzMrLRNYWGhCA4OrsFUVTM1NRWTJk0SsbGxlba5d++e4orPBw8eiL/++kvrWGpqqrhx44ZMiR7P3d1d/Pe//xXffPONqF+/vrh06ZIQQoiDBw8KW1tbecNV4r333hNGRkZCpVIJlUolDA0Nxfvvvy93rMdasGCB0Gg0ol27dqJly5bi/v37QgghNm3aJNzc3GROV7XMzEzx8ccfi3bt2okGDRqIMWPGiP3794uQkBDh7Oys9fktJ6X9DnLT1Rp28OBBjBgxAnl5eRg3bhy+/vprAMB7772H8+fPY/fu3TInrFhWVhYyMzPRqVMn6On9fUU1NjYWpqamaNeunczp/kcIgfT0dDRt2hRZWVk4efIkSktL0blzZ7Rp00bueHXGgwcP8NVXX2HkyJHSZYTa4sGDBzh48CBSUlLg5eUFExMTXL9+HaampmjYsKHc8Sp05swZjBkzBunp6fD395dmP06bNg23bt3C9u3bZU5YsXv37uHcuXMoLS2Fk5OTYt/fR33//ffIyMjAq6++ihYtWgAAtmzZgkaNGiny8vTu3buxefNm/Pbbb3BycsLEiRMxduxYNGrUSGpz9uxZdO7cGUVFRfIF/f+U9jvIQkgGJSUlyMvLg5mZmXQsLS0NDRo0gIWFhYzJar/S0lIYGhri7NmztarwOXPmTIXHVSoVDA0N0bJlS6jV6hpOVbUGDRogOTkZtra2ckd5YlevXsXAgQORnp6OwsJCXLx4Ea1atcKMGTNw//59fPHFF3JHrJb79+9DX18f9evXlzuKlvHjx2PNmjXS2MIy+fn5mDZtmvQFkP4dGo0Gr732GiZOnIhu3bpV2KagoAArVqyQfQkRJf4OshCiCo0cOfKJ2yqtF6tDhw7YtGkT3Nzc5I7yxPT09KBSqSo9X79+fYwePRpffvklDA0NazBZ5dzd3TF9+nRFDYZ+nOHDh8PExASbNm1CkyZNcPr0abRq1QqHDh3CxIkTcenSJbkjVur27dv4/vvvkZKSgnfeeQeNGzfGyZMnYWlpqbhJAPr6+sjMzCz3xa5sILKSBu8CwKeffvrEbf38/J5hkqdz7949NGjQQO4YT0SJv4P1avwZdVDnzp2r/CP3sJMnTz7jNE9Go9HIHeGprVixAu+88w7Wr18PZ2dnueM8kbCwMMyePRvvvPMOnn/+eQghEBcXh8DAQCxYsAAPHjzAnDlz8P7772PlypVyxwUATJ48GQEBAbh27Rq6du0KY2NjrfMdO3aUKVnloqOjceTIERgYGGgdt7W1lVY/VqIzZ86gb9++aNSoEdLS0uDr64vGjRsjLCwMV69exTfffCN3RABAXl4exN9jT3Hnzh2tor2kpAS//PKLInu9V61a9UTtVCqVIguhBw8eIC8vr9xxlUoFtVpd7t+7nJT4O8hCqAbUpm/MZTZv3ix3hKc2duxY3Lt3D506dYKBgQGMjIy0zv/1118yJavckiVLsGbNGgwYMEA61rFjR7Ro0QLz589HbGwsjI2NERAQoJhCaPTo0QC0vyGrVCoIIaBSqVBSUiJXtEqVlpZWmOvatWvlLuMoib+/P9544w2sWLFCK+egQYPg5eUlYzJtjRo1gkqlgkqlQtu2bcudV6lUWLRokQzJqlYb9/p7WNn7XpkWLVrAx8cHCxYskMZ4ykWJv4MshGqA3Ndkdc3q1avljlBtiYmJFY61sbW1ldYuee655ypcH0kutfGPR//+/bF69WppXyOVSoW7d+9iwYIFeOWVV2ROV7m4uDh8+eWX5Y43b94cWVlZMiSq2IEDByCEQJ8+fbBr1y40btxYOmdgYABbW1tYW1vLmLBuCg4Oxrx58+Dj46PVo7xlyxa8//77uHnzJlauXAm1Wo333ntP1qxK/B3kGCF6It9//z2+/fZbpKenl5t1oJTLebVZ586d0alTJ3z11VdSl3FxcTF8fX1x+vRpnDp1CkeOHMHYsWNrZQGiFNevX4e7uzv09fVx6dIluLq64tKlSzA3N8fhw4cVedkG+HuD2/DwcHTu3BkmJibSuIqIiAhMmDABGRkZckfUcvXqVdjY2Mje+/C0rl27hj179lT4eRcUFCRTqsr17dsXkyZNwqhRo7SOf/vtt/jyyy8RFRWFrVu3YsmSJTh//rxMKf+mxN9BFkI1rKSkBKtWraq0qFDiZZtPP/0U8+bNw7hx47Bhwwa88cYbSElJQVxcHKZMmYIlS5bIHbFSBQUFKC4u1jpmamoqU5rKHT16FEOHDoWenh46duwIlUqFM2fOoKSkBD///DPc3NywdetWZGVl4Z133pE7rpZz585V+G956NChMiWqWkFBAXbs2CEtrdClSxeMGTOm3CVUJXnzzTdx8+ZNfPvtt2jcuDHOnDkDfX19DB8+HC+99JJie0Hv3btX4b8NJY4fKxMVFYWhQ4fC3t4eFy5cgLOzM9LS0iCEQJcuXbB//365I5bToEEDnD59utxM2UuXLqFTp064d+8eUlNT0aFDB60NtOVSUFCA0NBQxMfHK+N3sKYXLtJ18+fPF82aNROffPKJMDQ0FB9++KGYMGGCaNKkiVizZo3c8Srk6Ogotm/fLoTQ3jdo/vz5YsqUKXJGq9Ddu3fFlClTRNOmTYWenl65m1LduXNHrF+/XsycOVPMmDFDfPHFFyIvL0/uWJVKSUkRHTt2FCqVSlq8suy/lfw+10a5ubmiV69eolGjRkJfX1/Y2NiI+vXri5deekncvXtX7njlZGdnC09Pzwp//5T+b6Nbt25i/vz5Qoj/fd7duXNHDB06VJGbTAshRJs2bcTs2bPLHZ89e7Zo27atEEKIuLg4xW86LRf2CNWw1q1b49NPP4WnpydMTEyQkJAgHYuJiVHkwmgPrxdjYWGByMhIdOrUCZcuXYKbmxtu3bold0QtU6ZMwYEDB7B48WL897//xWeffYY//vgDX375JZYvX44xY8bIHbFOGDJkCPT19bFhwwa0atUKsbGxuHXrljSg+8UXX5Q7IgBgz549T9xWqb1YZfbv36/Vk9WvXz+5I1VozJgxSEtLw+rVq+Hu7o6wsDDcuHEDH330EQIDA+Hp6Sl3xEo9/LlsZmaG6OhodOjQAadPn8awYcOQlpYmd8Ry9uzZg1dffRXt2rVDt27doFKpEBcXh/Pnz+P777/H4MGDsX79ely6dEn2S3vLli2DpaUlxo8fr3X866+/xs2bNzF79uyaDyV3JaZrGjRoIK5evSqEEMLKykrEx8cLIf7+dm1qaipntErZ29tLOV1dXcUXX3whhBDit99+E2ZmZnJGq5CNjY04cOCAEEJIe40JIcQ333wjBg0aJGOyql2+fFlMnTpV9O3bV/Tr10/4+fmJy5cvyx2rUk2aNBGnT58WQvy93cb58+eFEEJERUWJ5557Ts5oWsp6qh53U3pPRW1iZWUljh8/LoT4+3fwwoULQgghfvzxR9GrVy85oz2WpaWlOHv2rBBCCCcnJ/Hjjz8KIYRISEgQxsbGckarUlpampgzZ44YMWKEGD58uJgzZ460r6WS2NraiiNHjpQ7HhMTI+zs7GRIJARnjdWwFi1aIDMzEy1btoSDgwMiIiLQpUsXxMXFKW7l4DJ9+vTBTz/9hC5dumDChAmYOXMmvv/+e5w4caJaCy/WlL/++gv29vYA/h4PVDbu6oUXXsDbb78tZ7RK/fbbbxg6dCiee+459OrVC0IIHD16FF9++SV++ukn9O/fX+6I5ZSUlEjL4Zubm+P69etwdHSEra0tLly4IHO6/yktLZU7wlP59NNP8eabb8LQ0PCxC/4pbW2b/Px8adBr48aNcfPmTbRt2xYuLi6Kn1zh5uaGI0eOwMnJCZ6enggICEBiYiJ2796tyEVai4uL4eHhgS+//BLLli2TO85jZWVloVmzZuWON23aVLZZsSyEatiIESMQFRWF7t27Y/r06Xj99dexadMmpKenY+bMmXLHq9BXX30l/TF566230LhxY0RHR2PIkCF46623ZE5XXqtWrZCWlgZbW1s4OTnh22+/xfPPP4+ffvpJa+8dJZkzZw5mzpyJ5cuXlzs+e/ZsRRZCzs7OOHPmDFq1aoXu3btjxYoVMDAwwFdffYVWrVrJHa/WW7VqFcaMGQNDQ8MqF/xT4iJ/jo6OuHDhAuzs7PDcc8/hyy+/hJ2dHb744osK/wgqSVBQEO7evQsAWLhwIe7evYudO3fCwcHhiRderEn169dHUlLSEy/aKzcbGxscOXJE+rJa5siRI/ItrSBLPxRJjh07JgIDA6XuV/rngoKCpIHn+/fvF0ZGRsLAwEDo6emJ1atXy5yuYmq1Wly8eLHc8QsXLgi1Wi1DoscLDw8Xu3btEkL8fWm3ffv2QqVSCXNzcxEVFSVzusrt27dPeHp6ilatWonWrVsLT09PERkZKXesOiUkJERs3rxZCCHEyZMnpYkLhoaGIjQ0VN5wdZC/v3+Fg6WVaPny5aJJkybi66+/FmlpaSItLU1s2rRJNGnSRCxdulSWTBwsTRU6c+YMnJ2doaenV+mGoGWUPBUWANLT03HixAm0bt0anTp1kjtOhWxsbBAUFIRXX31V6/i3336LWbNmIT09XaZk1fPXX3/BzMxMsd9O161bh5kzZ+I///kPevToAQCIiYnB999/j6CgIEydOlXmhBVbvHgxZs2aVW4/qYKCAnzyySf44IMPZEr2ZO7du4fz58+jZcuWMDc3lztOnTNt2jR88803cHBwgKura7ntbuQeIP0wIQTmzJmDTz/9VFpWwdDQELNnz5bt3zELoRqwZ88eDBo0CPXr13/sDBalzFrR09NDVlYWLCwspA1BK/qnotStFGqbxYsXY9WqVZgzZw569uwJlUqF6OhofPzxxwgICMD7778vd8Q6oXnz5pg7d265guezzz7DkiVLcP36dZmSVa2yTUxv3boFCwsLxf0O1rbCrXHjxrh48SLMzc0fW8grca03d3f3Ss+pVCpFrn109+5dJCcnw8jICG3atJF1jCwLoRrwaFFRGSUVFVevXkXLli2hUqlw9erVKttWtDWEHPbv34+pU6ciJiam3KKJubm56NmzJ7744gvFTOt+mBACq1evRmBgoPTH2NraGu+88w78/PwU2cOSn5+P5cuXIyoqCtnZ2eUGJV+5ckWmZJUzMTHBqVOn4ODgoHX80qVL6Ny5szQ2RGn09PRw48YNNG3aVOv4/v37MXr0aNy8eVOmZBWrbYXbli1b8Nprr0GtVmPLli1Vth03blwNpaKawsHSNeDhPxC1ZQbLw8WNUgqdx1m9ejV8fX0rXDlao9Fg0qRJCAoKUmQhpFKpMHPmTMycORN37twBAEVvAgoAEydOxKFDh+Dt7Y1mzZopslh71NChQxEWFlZude4ff/wRQ4YMkSlV5cp6J8o2MX34PS4pKcHdu3cVOWFB/P+Ndx91+vRprf3HlKKsuHnw4AEAYMCAAbCyspIz0lO5fPkyUlJS8NJLL8HIyKjS/w81beTIkQgODoapqeljZxrv3r27hlL9DwuhGvTwNMeKdmZWKkUugFWB06dP4+OPP670vIeHh2J2bq+K0gugMr/++iv27t2LXr16yR3libVv3x5LlizBwYMHtcYIHTlyBAEBAVrT1JUwE2v16tUQQmD8+PFYtGgRNBqNdM7AwAB2dnbS61CC2lq4lalXrx7efvttJCcnyx2lWm7duoVRo0bhwIEDUKlUuHTpElq1aoWJEyeiUaNGCAwMlDWfRqOR/i08/G9YKXhprIY1bdoUR48eLbcnjJLZ2dlh+/bt6Nmzp9bx48eP47XXXlPMJqCGhoZISkoqd9mjzOXLl+Hi4oKCgoIaTlaxzp07P/G3NSWuvWJvb49ffvkF7du3lzvKE3t0ym5lVCqVoi7tHTp0CD179kT9+vXljlKlLVu2SIXb6tWrFV+4VcTd3R3Tp0/H8OHD5Y7yxP773/8iOzsbGzduRPv27bU25Z05cybOnj0rd0RFY49QDfvvf/+LTZs2lVsvRsmUuABWRZo3b47ExMRKC6EzZ84oag2T2vRBW5EPP/wQH3zwAbZs2VJuUKxSKaVofxJ5eXnSZd7OnTujoKCg0iJeKRsJl11isre3R69evVCvXu37EzN58mQEBATg2rVr6Nq1a7kZWEqcJRsREYHffvsNLVq00Drepk2bx47xrGmLFi3C2LFj0bp1a7mjSGrfv9JarqioCBs3bkRkZKTipzmWUeQCWBV45ZVX8MEHH2DQoEEwNDTUOldQUIAFCxZg8ODBMqUrb8GCBXJH+EcCAwORkpICS0tL2NnZleutUGIvVm1iZmYmDThu1KhRhb2HZWNAlDb42MTEBMnJyXBxcQHw9xiszZs3w8nJCQsXLoSBgYHMCSs3evRoANqXRstmzSrxvQb+nrhQ0ZeRP//8U3E7FuzatQuLFy9Gt27dMHbsWIwePbrcJICaxkKohiUlJaFLly4AgIsXL8qc5slMnDgRM2bMQHFxMfr06QMAiIqKwrvvvouAgACZ0/3P+++/j927d6Nt27aYOnUqHB0doVKpkJycjM8++wwlJSWYN2+e3DGrFB8fj+TkZKhUKjg5OaFz585yR6pUbe3RunbtGvbs2YP09HRpHZMySvoisn//fmlg8YEDB2ROUz2TJk3CnDlz4OLigitXrmD06NEYOXIkvvvuO9y7dw+rV6+WO2KlalOvYZmXXnoJ33zzDT788EMAfxdupaWl+OSTT6qcWi+HM2fO4OzZs9i2bRuCgoLg7++Pfv36YezYsRg+fLg8vcs1voQj1TqlpaXi3XffFYaGhkJPT0/o6emJBg0aiEWLFskdrZy0tDQxaNAgoaenp7WZ5qBBgxS5AWGZGzduCHd3d6FSqYSZmZlo1KiRUKlUok+fPiI7O1vueHXGvn37RIMGDUSHDh1EvXr1xHPPPScaNWokNBqNcHd3lztenWFqaiptGLx8+XLh4eEhhBAiOjpatGjRQs5oddLZs2dF06ZNxcCBA4WBgYH4z3/+I9q3by8sLS0VvXGzEH//m5g8ebJo2rSpMDExkSUDB0vXsPHjx2PNmjXlZgbl5+dj2rRp+Prrr2VK9nhKWgDrcXJycnD58mUIIdCmTRuYmZnJHalKo0ePRkpKCrZu3SoNPj537hzGjRsHBwcH7NixQ+aElatNvVjPP/88Bg4ciMWLF8PExASnT5+GhYUFxowZg4EDBypqU97Hrej+MKWNWzE1NUV8fDzatGmD/v37Y/DgwZg+fTrS09Ph6OiomAkLldm6dSu++OILpKam4tixY7C1tcXq1athb2+PYcOGyR2vQllZWVi/fj3i4+NRWlqKLl26YMqUKYoaF1mRhIQEhISEIDQ0FLdu3ZLn34Ys5ZcO09PTEzdu3Ch3/ObNm0JfX1+GRKQEpqamIjY2ttzx48ePC41GU/OBnkBt7MVq2LCh9A25UaNGIikpSQghREJCgrC1tZUxWXllvZllPZuV3fT09OSOWo67u7v473//K7755htRv359cenSJSGEEAcPHlTc+/yozz//XJibm4uPPvpIGBkZiZSUFCGEEJs3bxYvv/yyzOnqhitXroiPPvpItG/fXujr6wt3d3exYcMGcfv2bVnycIxQDcnLy4MQAkII3LlzR2swb0lJCX755Zdyq7AqRW1cQbi2KS0trXBqdP369RW7COe0adOQl5eHs2fPluvF8vPzU2QvlrGxMQoLCwH8vXJ3SkoKOnToAODvgaVKUhvHqpRZvXo1xowZgx9++AHz5s2TZnJ+//335ZbhUJq1a9diw4YNGD58uNbsXldXV8yaNUvGZFW7ffs2YmNjK/yM/u9//ytTqvJ69OiB2NhYuLi44I033oCXlxeaN28uayYWQjWkbNZH2UJjj1KpVFi0aJEMyR6vNq4gXNv06dMH06dPx44dO6SZeH/88QdmzpyJvn37ypyuYuHh4di3b5/WOkJOTk747LPP4OHhIWOyyrm5ueHIkSNwcnKCp6cnAgICkJiYiN27d8PNzU3ueFpqy4ruFenYsSMSExPLHf/kk0+gr68vQ6Inl5qaWuHlXbVajfz8fBkSPd5PP/2EMWPGID8/HyYmJlqf0SqVSlGFkLu7OzZu3Ch9AVECFkI15MCBAxBCoE+fPti1a5fWMvMGBgawtbVV1FT0h9XGFYRrm3Xr1mHYsGGws7ODjY0NVCoV0tPT4eLigpCQELnjVag29mIFBQVJ+4ktXLgQd+/exc6dO+Hg4IBVq1bJnE5bbdysOTY2Fl27dpWKHfHIFg8qlQphYWEYNWqUXBEfy97eHgkJCeUK0V9//RVOTk4ypapaQEAAxo8fj6VLlyp6Ta/i4mKEhoZi7NixckfRwsHSNezhzUxri9q4gnBtFRkZifPnz0MIAScnJ/Tr10/uSJUaNmwYbt++Xa4Xa8yYMTAzM0NYWJjMCWu32rhZ86ObrZqamiIhIQGtWrUCANy4cQPW1taKyVuRzZs3Y/78+QgMDMSECROwceNGpKSkYNmyZdi4cSNee+01uSOWY2xsjMTEROl9VrLmzZuX60mWGwuhGhYeHo6GDRvihRdeAAB89tln2LBhg3RJQYmzm0JCQvDjjz/WqhWEL168iIMHD1Z4vfyDDz6QKVXdkpGRgWHDhiEpKalcL9aPP/5YbpVbJWjVqhXi4uLQpEkTreO3b99Gly5dON7tH3q4eAMgzcx7uBBq1qyZYnsMy2zYsAEfffQRMjIyAPz9x3vhwoWYMGGCzMkqNnLkSLz22muK7mkrs3z5cpw/fx4bN25UzMrjLIRqmIuLCz7++GO88sorSExMhKurKwICArB//360b98emzdvljtiOZ07d0ZKSgqEELViBeENGzbg7bffhrm5OaysrMp1zSstb5moqKhKB6QreVmF2tSL9egf6jI3btxAy5YtpYHUSvPNN99g9OjR5ZasKCoqQmhoqGLGgDxJIaT0HqGH/fnnnygtLVXsRJYymzZtwuLFi/HGG2/AxcWl3Ge0Ui6dAsCIESMQFRWFhg0bwsXFpdzuCnLsPs9CqIY1bNgQSUlJsLOzw8KFC5GUlITvv/8eJ0+exCuvvIKsrCy5I5bzuEHcStsqwtbWFpMnT8bs2bPljvLEFi1ahMWLF8PV1bXCAem8zPTPlI2xGT58OLZs2aK1GWhJSQmioqIQGRmJCxcuyBWxSo9ecipz69YtWFhYKKawqAuFUJ8+fbB79240atRI63heXh6GDx+O/fv3yxOsCrXl0ikAvPHGG1Wel6MzQBn9UjrEwMAA9+7dAwDs27dP+ibXuHFj5OXlyRmtUkordB4nJycHr776qtwxquWLL75AcHAwvL295Y5SpU8//RRvvvkmDA0N8emnn1bZ9uG9muRWth2ISqWSNgYtU79+fdjZ2SEwMFCGZE/m0UHHZa5du6ZV1CnBuXPnpC90QgicP39eGqCutCUKKnLw4MFyW68AwP379/H777/LkOjxlH6p8WFKvOrBQqiGvfDCC/D390evXr0QGxuLnTt3Avh7TIsSx1TURq+++ioiIiLw1ltvyR3liRUVFSl+fRUAWLVqFcaMGQNDQ8MqZ1mpVCpFFUJlfyjs7e0RFxcHc3NzmRM9mc6dO0vLbvTt21drTEVJSQlSU1MxcOBAGROW17dvXzx8oaFso+OHNy5VoodX8n64mAP+fq/Dw8NlX+/mUa+88gp27NghFcNLlizBlClTpN6sW7du4cUXX8S5c+dkTFnegwcPcPDgQaSkpMDLywsmJia4fv06TE1N0bBhwxrPw0tjNSw9PR2TJ09GRkYG/Pz8pMF3M2fORElJyWO/ZcuhpKQEq1atwrffflvhRpV//fWXTMn+5+H3LT8/H0FBQfD09KzwermS/kCXmT17Nho2bIj58+fLHYUUZNGiRRBCYPHixQgICND6I2FgYAA7Ozv83//9n2J2c7969eoTtVPiGkl6enpSkVbRn0UjIyOsXbsW48ePr+lolaqNs/SuXr2KgQMHIj09HYWFhbh48SJatWqFGTNm4P79+/jiiy9qPBMLIXqsDz74ABs3boS/vz/mz5+PefPmIS0tDT/88AM++OADRRQW9vb2T9ROpVIpcmbQ9OnT8c0336Bjx47o2LFjueJNSbuil1m8eDFmzZpVbiZhQUEBPvnkE0XNzjt+/Dj++usvDBo0SDr2zTffYMGCBcjPz8fw4cOxdu1axe6fV9lgafr3XL16FUIItGrVCrGxsWjatKl0zsDAABYWFopbDLI2jskaPnw4TExMsGnTJjRp0kTKe+jQIUycOBGXLl2q8UwshGpYenp6ledbtmxZQ0meXOvWrfHpp5/C09MTJiYmSEhIkI7FxMRg+/btckes9dzd3Ss9p1KpFDlAs7YM4AWAQYMG4eWXX5YG0CcmJqJLly7w8fFB+/bt8cknn2DSpElYuHChvEEf8XAvxcNMTU3h6OiId999FyNHjpQhGSlBbSyEzM3NceTIETg6OmrlTUtLg5OTkzSGtiZxjFANs7Ozq/IauZL+wZbJysqCi4sLgL9nveXm5gL4+9q/Ei/l1KaeijIHDhyQO0K1VTbe4/Tp01orpytBQkICPvzwQ+l+aGgounfvjg0bNgAAbGxssGDBAsUVQrt3767wPS7bV2rs2LHYsmVLrZscUBucO3euwqEASpqKXjZ+7NFjSlZaWlrh37lr167BxMREhkQshGrcqVOntO4XFxfj1KlTCAoKwpIlS2RKVbUWLVogMzMTLVu2hIODAyIiItClSxfExcUpsqt+0aJFeOutt8oVQvfu3cOiRYsUWQjVJmZmZlr75j38wVtSUoK7d+8qbqB6Tk4OLC0tpfuHDh3SGmTcrVs3afE8JSmb7VaRcePGwcnJCStXrmQh9C+6cuUKRowYgcTERGmAN/C/AkNJX1aFEPDx8ZE+h+/fv4+33npLWptHieti9e/fH6tXr8ZXX30F4O/39e7du1iwYAFeeeUVWTKxEKphnTp1KnfM1dUV1tbW+OSTTxTZzV22AFb37t0xffp0vP7669i0aRPS09Mxc+ZMueOVU5t6Ksrk5+dj+fLllS6oqKRxTatXr4YQAuPHj8eiRYu0pm+XDeDt0aOHjAnLs7S0RGpqKmxsbFBUVISTJ09qrY91586dCvdNUzoPDw+8//77cseoU6ZPnw57e3vs27dPGi9069YtBAQEYOXKlXLH0/LoUhAV7eGllMU2y6xatQru7u5wcnLC/fv34eXlhUuXLsHc3Bw7duyQJRMLIYVo27Yt4uLi5I5RoeXLl0v//Z///ActWrTA0aNH4eDgoKhu4trYU1Fm4sSJOHToELy9vStcUFFJyj587e3t0atXL8Usk1+VgQMHYs6cOfj444/xww8/oEGDBnjxxRel82fOnEHr1q1lTPh0CgoKYGhoKHeMOuXYsWPYv38/mjZtCj09Pejp6eGFF17AsmXL4OfnV65XX05KXJPncaytrZGQkIDQ0FDEx8ejtLQUEyZMwJgxY2BkZCRLJg6WrmGPLpoohEBmZiYWLlyI8+fPIyEhQZ5gdcCWLVuknorVq1fXip6KMo0aNcLevXvRq1cvuaNUS0pKCjZv3oyUlBSsWbMGFhYWCA8Ph42NDTp06CB3PMnNmzcxcuRIHDlyBA0bNsSWLVswYsQI6Xzfvn3h5uam2MvTlZk2bRpSUlLwyy+/yB1FWvPoSSh1mxvg7y9U8fHxaNWqFVq3bo2NGzfC3d0dKSkpcHFxkWUwLz1byv8qV8c0atSo3IeFEAI2NjYIDQ2VKdXj1YZNTB/uqejZs2etutRhZmam2Mt2lTl06BAGDRqEXr164fDhw1iyZAksLCxw5swZbNy4Ed9//73cESVNmzbF77//jtzcXDRs2LDcNOjvvvtOloXcHsff37/C47m5uThx4gRSUlIUs9pxVeOZahNnZ2ecOXMGrVq1Qvfu3bFixQoYGBjgq6++qhW7uyvV5cuXkZubi65du0rHoqKi8NFHH0lLWLz33nuyZGOPUA07dOiQ1n09PT00bdoUDg4Oir3EUBs2Ma3O9iSmpqbPMMnTCQkJwY8//ogtW7aUG+StVD169MCrr74Kf39/rWmwcXFxGD58OP744w+5I9Z6lS2rYGpqinbt2mHy5MmKXJywNvvtt9+Qn5+PkSNH4sqVKxg8eDDOnz+PJk2aIDQ0FH379pU7Yq00YsQIODs7S7M3U1NT0aFDB7z44oto164dvv76a3z44YeYMWNGjWdjIUSPVRs2Ma1svZWHlQ2iVsqsj0cvJVy+fBlCCNjZ2ZXrzVJCsfmohg0bIjExEfb29uXWA2nXrh3u378vd0Sif8Vff/0ljUGkp2NjY4Nvv/1WGp7w0Ucf4fvvv5eGg2zatAlr166VZXiIMrsg6piyna+fhJIGH5epDZuY1sZ1eGr7pYRGjRohMzOz3Krep06dUtyeTFSzasO2PI960q0zvv7662ecpG76888/tfbTPHDgAIYMGSLdf/nllxEQECBHNBZCNeHRP3gPr01Rdr+MUnorHlYbNjHt3bu33BGqbcGCBXJH+Ee8vLwwe/ZsfPfdd1CpVCgtLcWRI0cwa9YsxU3ZpZq1aNGiKrflUaLg4GDY2tqic+fOFe41Rv9M48aNkZmZCRsbG5SWluLEiRNay68UFRXJ9r6zEKoBDw8u3rdvH2bPno2lS5eiR48eUKlUOHr0KN5//30sXbpUxpSVc3BwwPz58xETE1NrNjEF/l5AsaJvox07dpQpUeXi4uJQWlqK7t27ax0/fvw49PX14erqKlOyyi1ZsgQ+Pj5o3rw5hBBwcnJCSUkJvLy8FLm2TXFxMd58803Mnz+fg16fsW3btmHDhg3w9PTEokWL8Prrr6N169bo2LEjYmJiFPmZ8dZbbyE0NBRXrlzB+PHjMXbs2Fo3gUHJevfujQ8//BCff/45vvvuO5SWlmqNgTt37hzs7OzkCSeoRnXo0EH8/vvv5Y4fPnxYtGvXToZEj2dnZ1fpzd7eXu545WRnZwtPT0+hp6dX4U2JunXrJr777rtyx3ft2iWef/55GRJVrbS0VKSlpYn8/HyRkpIivvvuO7Fz505x8eJFuaNVSaPRiJSUFLlj1HkNGjQQV69eFUIIYWVlJeLj44UQQqSkpAhTU1M5o1Xp/v37Yvv27aJfv36iQYMG4tVXXxXh4eGitLRU7mi13pUrV0Tr1q2Fnp6eqFevnvj888+1zg8bNkzMmDFDlmzsEaphKSkpWuvblNFoNEhLS6v5QE8gNTVV7gjVMmPGDOTk5CAmJgbu7u4ICwvDjRs38NFHHyEwMFDueBU6d+4cunTpUu54586dce7cORkSVU0IgTZt2uDs2bNo06ZNrelhGTFiBH744YdKp6XTv6O2bctTRq1W4/XXX8frr7+Oq1evIjg4GJMnT0ZxcTHOnTunyCUWagt7e3skJyfj3LlzaNq0KaytrbXOL1q0SGsMUU1iIVTDunXrhhkzZiAkJATNmjUD8PempgEBAXj++edlTlc37N+/Hz/++CO6desGPT092Nraon///jA1NcWyZcvg6ekpd8Ry1Go1bty4Ua6gyMzMVOSyCnp6emjTpg1u3bqFNm3ayB3niTk4OODDDz/E0aNH0bVrV2lPpjJKvGRTG9W2bXkqUrZKvRCi3Npp9HTq169f4TZTQMXbT9UUTp+vYZcvX8aIESNw4cIFtGzZEgCQnp6Otm3b4ocffoCDg4PMCf/m7++PDz/8EMbGxo/99hwUFFRDqZ6Mqakpzpw5Azs7O9jZ2WHbtm3o1auXtG6FEleGfe2115CVlYUff/xR6jG8ffs2hg8fDgsLC3z77bcyJyxv7969WL58OdavXw9nZ2e54zyRR2e4PUylUilqT7e6JCYmRpHb8jyqsLAQu3fvxtdff43o6GgMHjwYb7zxBgYOHAg9PT2549EzoryvmnWcg4MDzpw5g8jISJw/f14aZNqvXz9FrVFx6tQpnD9/Hp07d65ybx0lZS7j6OiICxcuwM7ODs899xy+/PJL2NnZ4YsvvpB64ZQmMDAQL730kjRrBQASEhJgaWmJrVu3ypyuYmPHjsW9e/fQqVMnGBgYlNsnSIlTpGvbZd66ws3NDW5ubnLHqNLkyZMRGhqKli1b4o033kBoaCiaNGkidyyqAewRokrp6+sjMzMTFhYWAIDRo0fj008/haWlpczJqrZt2zYUFxfDx8cHp06dwoABA3Dr1i0YGBggODgYo0ePljtihfLz87Ft2zacPn0aRkZG6NixI15//XXFbhWyZcuWKs8/ujO2khQVFSE1NRWtW7dW5KXHumDr1q344osvkJqaimPHjsHW1harV6+Gvb09hg0bJne8cvT09NCyZcvH7pm2e/fuGkxFNYGFkAyioqIQFRVV4b5dSlqsS09PD1lZWVIhZGpqioSEhFozMLbMvXv3cP78ebRs2RLm5uZyxyEZ3bt3D9OmTZOKuIsXL6JVq1bw8/ODtbU15syZI3PCumH9+vX44IMPMGPGDCxZsgRJSUlo1aoVgoODsWXLFkUugOrj4/NEPdy1ccd3qhq/CtWwRYsWYfHixXB1dUWzZs0UeWmpMrWtZn74W39FM7KUZuvWrfjyyy9x5coV6Rv0qlWr0KpVK0V+g/7ll1+gr6+PAQMGaB2PiIhASUkJBg0aJFOyys2dOxenT5/GwYMHMXDgQOl4v379sGDBAhZC/5K1a9diw4YNGD58OJYvXy4dd3V1xaxZs2RMVrng4GC5I+iM27dvIzY2tsLOAFkWY5Vl0r4Os7KyEt98843cMZ6Inp6eyM7Olu43bNhQXLlyRcZETyY/P1+MHz9e6OvrC319fWndmGnTpolly5bJnK5in3/+uTA3NxcfffSRMDQ0lDJv3rxZvPzyyzKnq5iLi4vYu3dvueO//vqr6NixowyJHq9ly5bi2LFjQoi//z2Xvc+XLl0SJiYmckarUwwNDUVaWpoQQvt9vnjxojA0NJQzGslsz549wsTEROjp6QmNRiMaNWok3czMzGTJxGHwNayoqAg9e/aUO8YTEULAx8cHI0eOxMiRI3H//n289dZb0v2ym9I8/K3f0NBQOt6vXz/s3LlTxmSVK/sGPW/ePK0xK66urkhMTJQxWeUuXboEJyencsfbtWuHy5cvy5Do8W7evCld6n1Yfn5+reqdVTp7e/sKN8/89ddfK/w3Q7ojICAA48ePx507d3D79m3k5ORIN7kmWPDSWA2bOHEitm/fjvnz58sd5bEeHew6duxYmZJUzw8//ICdO3fCzc1N64+bk5MTUlJSZExWudTUVGm22MPUajXy8/NlSPR4Go0GV65cKbcs/uXLl8utz6MU3bp1w969ezFt2jQA/5v1uGHDBmlXbPrn3nnnHUyZMgX379+HEAKxsbHYsWMHli1bho0bN8odj2T0xx9/wM/PDw0aNJA7ioSFUA27f/8+vvrqK+zbtw8dO3YsNyNISWvy1NZBgbXxW3/ZN2hbW1ut40r+Bj106FDMmDEDYWFhaN26NYC/i6CAgADFrhWzbNkyDBw4EOfOncODBw+wZs0anD17FseOHcOhQ4fkjldnvPHGG3jw4AHeffdd3Lt3D15eXmjevDnWrFmD1157Te54JKMBAwbgxIkTipp0w0Kohp05cwbPPfccACApKUneMHVUbfrWv3jxYsyaNatWfoP+5JNPMHDgQLRr105aGv/atWt48cUXsXLlSpnTVaxnz544cuQIVq5cidatW0tbPxw7dgwuLi5yx6tTfH194evriz///BOlpaXSl5M//vgDzZs3lzkdycXT0xPvvPMOzp07V+Em3nJ8ieL0eapzjh49ioEDB2LMmDEIDg7GpEmTtL71d+3aVe6IkofXatqwYQM++ugjZGRkAACaN2+OhQsXYsKECTKnrJwQApGRkVprH7300ktyxyIFysrKwpIlS7Bx40YUFBTIHYdkUtUK3SqVCiUlJTWY5v8/LwuhmvEkg4pVKhV27dpVA2nqvsTERKxcuRLx8fEoLS1Fly5dMHv2bMV96390rSYA5b5B1ya3b99Go0aN5I7xWNnZ2RVO3e3YsaNMieqG27dvY8qUKYiIiED9+vUxZ84cTJ06FQsXLsTKlSvRoUMH+Pv74/XXX5c7KpGEl8ZqSEU7ztOz4+Li8tiVj5Xi0XFLtWXRx48//hh2dnbSSt2jRo3Crl27YGVlhV9++UXWTRQrEx8fj3HjxiE5ObnculhyfRutS9577z0cPnwY48aNQ3h4OGbOnInw8HDcv38fv/76K3r37i13RKJy2CNEdUZeXt4TtTM1NX3GSZ6cnp4enJ2dH7vNw8mTJ2so0ZNr1aoVQkJC0LNnT0RGRmLUqFHYuXMnvv32W6SnpyMiIkLuiOV07NgRDg4OmD17NiwtLcsVoY8OVqfqsbW1xaZNm9CvXz9cuXIFDg4O8PPzw+rVq+WORgpy6NAhrFy5EsnJyVCpVGjfvj3eeecdvPjii7LkYY8Q1RmNGjWqclaYEEKR3/oHDBiAhg0byh2j2jIzM2FjYwMA+PnnnzFq1Ch4eHjAzs4O3bt3lzldxVJTU7F79244ODjIHaVOun79ujTLsVWrVjA0NMTEiRNlTkVKEhISgjfeeAMjR46En58fhBA4evQo+vbti+DgYHh5edV4JhZCVGc8vH+REAKvvPIKNm7cqPgZKu+8806tHA9kZmaGjIwM2NjYIDw8HB999BGAv997pRWbZfr27YvTp0+zEHpGSktLtWYB6evrK3ZNKZLHkiVLsGLFCsycOVM6Nn36dAQFBeHDDz+UpRDipTGqs0xMTHD69GlFrVfxqIdnjdU2U6dOxc8//4w2bdrg1KlTSEtLQ8OGDbFz5058/PHHiryc9+eff2LcuHF4/vnn4ezsrIipu3WJnp4eBg0aBLVaDQD46aef0KdPn3LFEHdw111qtRpnz54t92Xk8uXLcHZ2xv3792s8E3uEiGRUm7+HrFq1CnZ2dsjIyMCKFSuky3uZmZmYPHmyzOkqdvToUURHR+PXX38td06Jl01rm9q6Gj3VHBsbG0RFRZUrhKKioqRL7TWNPUJUZ9WGHqGrV6+iZcuWil3xuq6xs7PD4MGDMX/+fFhaWsodh0jnrF+/HjNmzMD48ePRs2dPqFQqREdHIzg4GGvWrMGkSZNqPBMLIaqzTExMcObMGdjb28sdpc7Ys2cPBg0ahPr162PPnj1VtlXiZSYTExMkJCRIW4IQUc0LCwtDYGAgkpOTAUCaNTZs2DBZ8rAQojrj0UUrOT7h3/fwApBKXCH2ccaNG4cXX3yRM5mISMIxQlRnPLpoJccn/PseXon50VWZa4O2bdti7ty5iI6OrnCfIz8/P5mSEZFc2CNERDqjqsukKpUKV65cqcE0RLqhcePGuHjxIszNzWFmZlblmMi//vqrBpP9jT1CRApx+/ZtxMbGVrgH1n//+1+ZUlWstLQUwcHB2L17N9LS0qBSqWBvb4///Oc/8Pb2Vuzg79TUVLkjEOmcVatWwcTERPpvpX0+sEeISAF++uknjBkzBvn5+TAxMdH6oFCpVLJ8S6qMEAJDhgyR9hNr164dhBBITk5GYmIihg4dih9++EHumERET4SFEJECtG3bFq+88gqWLl2KBg0ayB2nSps3b8b06dPx448/wt3dXevc/v37MXz4cKxbt05xvVgAMH78+CrPf/311zWUhEg3VbaI7K1bt2BhYSHLJAteGiNSgD/++AN+fn6KL4IAYMeOHXjvvffKFUEA0KdPH8yZMwfbtm1TZCGUk5Ojdb+4uBhJSUm4ffs2+vTpI1MqIt1RWd9LYWEhDAwMajjN31gIESnAgAEDcOLECUUv/ljmzJkzWLFiRaXnBw0ahE8//bQGEz25sLCwcsdKS0sxefLkWvHeE9VWZZ8JKpUKGzdu1NpouqSkBIcPH0a7du1kycZLY0QKsGnTJixevBhvvPFGhdO6lbQ4oYGBAa5evYpmzZpVeP769euwt7dHYWFhDSd7ehcuXMDLL7+MzMxMuaMQ1UllMzavXr2KFi1aQF9fXzpnYGAAOzs7LF68GN27d6/xbCyEiBSgNi1OqK+vj6ysLDRt2rTC8zdu3IC1tbWiMj/OL7/8gnHjxuHmzZtyRyGq09zd3bF7926YmZnJHUXCS2NEClCbFicUQsDHx0faYfxRSu4J8vf317ovhEBmZib27t1bbsNQIvr3HThwQO4I5bBHiIiq5Y033niidps3b37GSarv0QHeenp6aNq0Kfr06YPx48ejXj1+NyR61q5du4Y9e/YgPT0dRUVFWueCgoJqPA8LISKFOHToEFauXInk5GSoVCppI8IXX3xR7mhERP+KqKgoDB06FPb29rhw4QKcnZ2RlpYGIQS6dOmC/fv313imygcmEFGNCQkJQb9+/dCgQQP4+flh6tSpMDIyQt++fbF9+3a549UZBQUFuHfvnnT/6tWrWL16NSIiImRMRaQ75s6di4CAACQlJcHQ0BC7du1CRkYGevfujVdffVWWTOwRIlKA9u3b480338TMmTO1jgcFBWHDhg1ITk6WKVnd4uHhgZEjR+Ktt97C7du34ejoCAMDA/z5558ICgrC22+/LXdEojrNxMQECQkJaN26NczMzBAdHY0OHTrg9OnTGDZsGNLS0mo8E3uEiBTgypUrGDJkSLnjQ4cO5f5Y/6KTJ09Klxq///57WFlZ4erVq/jmm28Uu/YRUV1ibGwsTaiwtrZGSkqKdO7PP/+UJRNHBhIpgI2NDaKiouDg4KB1PCoqCjY2NjKlqnvu3bsnbf4YERGBkSNHQk9PD25ubrh69arM6YjqPjc3Nxw5cgROTk7w9PREQEAAEhMTsXv3bri5ucmSiYUQkQIEBATAz88PCQkJ6NmzJ1QqFaKjoxEcHIw1a9bIHa+c4uJivPnmm5g/f36tWpHZwcEBP/zwA0aMGIHffvtNuhSZnZ0NU1NTmdMR1X1BQUG4e/cuAGDhwoW4e/cudu7cCQcHB6xatUqWTBwjRKQQYWFhCAwMlMYDlc0aGzZsmMzJKtaoUSOcPHmyVhVC33//Pby8vFBSUoK+fftKg6SXLVuGw4cP49dff5U5IRHVNBZCRPRUyrYDeXSRQqXLyspCZmYmOnXqJK3oHRsbC1NTU9n2OiLSFXFxcSgtLS23lcbx48ehr68PV1fXGs/ES2NE9FQcHBzw4Ycf4ujRo+jatSuMjY21zvv5+cmUrGpWVlawsrLSOvb888/LlIZIt0yZMgXvvvtuuULojz/+wMcff4zjx4/XeCb2CBHJpHHjxrh48SLMzc1hZmYGlUpVadu//vqrBpM9mbJNFCuiUqlw5cqVGkzzZPLz87F8+XJERUUhOzu73NYmSsxMVJc0bNgQZ86cKXdJPTU1FR07dsSdO3dqPBN7hIhksmrVKmkG06pVq6oshJSoNk7rnzhxIg4dOgRvb280a9as1r3nRLWdWq3GjRs3yhVCmZmZsm1xwx4hIvpHioqKkJqaitatWyt+r65GjRph79696NWrl9xRiHTSa6+9hqysLPz444/QaDQAgNu3b2P48OGwsLDAt99+W+OZuKAikQLo6+sjOzu73PFbt25BX19fhkSPd+/ePUyYMAENGjRAhw4dkJ6eDuDvsUHLly+XOV3FzMzM0LhxY7ljEOmswMBAZGRkwNbWFu7u7nB3d4e9vT2ysrIQGBgoSyYWQkQKUFnHbGFhIQwMDGo4zZOZO3cuTp8+jYMHD8LQ0FA63q9fP+zcuVPGZJX78MMP8cEHH2jtN0ZENad58+Y4c+YMVqxYAScnJ3Tt2hVr1qxBYmKibIvHKrsfm6iOK9vWQaVSYePGjWjYsKF0rqSkBIcPH1bslO4ffvgBO3fuhJubm9ZYGycnJ61l85UkMDAQKSkpsLS0hJ2dHerXr691/uTJkzIlI9IdxsbGePPNN+WOIWEhRCSjspVUhRD44osvtC6DGRgYwM7ODl988YVc8ap08+ZNWFhYlDuen5+v2EHIw4cPlzsCkc7Zs2cPBg0ahPr162PPnj1Vth06dGgNpfofDpYmUgB3d3fs3r0bZmZmckd5Yr1798Z//vMfTJs2DSYmJjhz5gzs7e0xdepUXL58GeHh4XJHJCIF0NPTQ1ZWFiwsLKRFTCuiUqlQUlJSg8n+xh4hIgU4cOCA3BGqbdmyZRg4cCDOnTuHBw8eYM2aNTh79iyOHTuGQ4cOyR2vSvHx8UhOToZKpYKTkxM6d+4sdySiOuvh9boeXbtLCdgjRKQQ165dw549e5Ceno6ioiKtc0FBQTKlqlpiYiJWrlyJ+Ph4lJaWokuXLpg9ezZcXFzkjlah7OxsvPbaazh48CAaNWoEIQRyc3Ph7u6O0NBQNG3aVO6IRFTDWAgRKUBUVBSGDh0Ke3t7XLhwAc7OzkhLS4MQAl26dMH+/fvljlgnjB49GikpKdi6dSvat28PADh37hzGjRsHBwcH7NixQ+aERHVfVFRUpau7f/311zWeh4UQkQI8//zzGDhwIBYvXgwTExOcPn0aFhYWGDNmDAYOHIi3335b7oiVys7OrvADrWPHjjIlqpxGo8G+ffvQrVs3reOxsbHw8PDA7du35QlGpCMWLVqExYsXw9XVtcLV3cPCwmo8E8cIESlAcnKy1BtRr149FBQUoGHDhli8eDGGDRumyEIoPj4e48aNQ3Jycrl1kOQa9Pg4paWl5abMA0D9+vUVOXaBqK754osvEBwcDG9vb7mjSLigIpECGBsbo7CwEABgbW2ttQ7Pn3/+KVesKr3xxhto27Ytjh49iitXriA1NVW6KXXz0j59+mD69Om4fv26dOyPP/7AzJkz0bdvXxmTEemGoqIi9OzZU+4YWtgjRKQAbm5uOHLkCJycnODp6YmAgAAkJiZi9+7dcHNzkztehVJTU7F79244ODjIHeWJrVu3DsOGDYOdnR1sbGygUqmQnp4OFxcXhISEyB2PqM6bOHEitm/fjvnz58sdRcJCiEgBgoKCcPfuXQDAwoULcffuXezcuRMODg7SootK07dvX5w+fbpWFUI2NjY4efIkIiMjcf78eQgh4OTkhH79+skdjUgn3L9/H1999RX27duHjh07lrtULccMWQ6WJqKn8ueff2LcuHF4/vnn4ezsXO4DTY4VYolI2dzd3Ss9p1KpZJkhy0KISGHu3r1bbuCuqampTGkqt2fPHnh7e+POnTvlziltsPT+/fsxdepUxMTElHsvc3Nz0bNnT3zxxRd48cUXZUpIRHLhYGkiBUhNTYWnpyeMjY2h0WhgZmYGMzMzNGrUSLHbbvj5+cHb2xuZmZkoLS3VuimpCAKA1atXw9fXt8KCUqPRYNKkSYpdtJKIni32CBEpQNksiunTp8PS0rLc2hq9e/eWI1aVTExMkJCQgNatW8sd5bFsbW0RHh4uLaL4qPPnz8PDwwPp6ek1nIxIt7i7u1e5KbMcl8Y4WJpIAc6cOYP4+Hg4OjrKHeWJjRw5EgcOHKgVhdCNGzcqXD+oTL169XDz5s0aTESkm5577jmt+8XFxUhISEBSUhLGjRsnSyYWQkQK0K1bN2RkZNSqQqht27aYO3cuoqOj4eLiUq7Q8PPzkylZec2bN0diYmKlM9zOnDmDZs2a1XAqIt1T2SzYstmycuClMSIFSElJwVtvvYWxY8dWOANLidtV2NvbV3pOpVIpalHFadOm4eDBg4iLi4OhoaHWuYKCAjz//PNwd3fHp59+KlNCIt12+fJlPP/88/jrr79q/LlZCBEpQExMDLy8vJCWliYdU6lUEEIobgZWbXTjxg106dIF+vr6mDp1KhwdHaFSqZCcnIzPPvsMJSUlOHnyJCwtLeWOSqSTtm7ditmzZ2ut+l5TeGmMSAHGjx+Pzp07Y8eOHRUOlqZ/xtLSEkePHsXbb7+NuXPnSnujqVQqDBgwAJ9//jmLIKIaMHLkSK37QghkZmbixIkTsq02zR4hIgUwNjaudas0jx8/vsrzX3/9dQ0lqZ6cnBxcvnwZQgi0adNGscsTENVFb7zxhtZ9PT09NG3aFH369IGHh4csmdgjRKQAffr0qXWFUE5Ojtb94uJiJCUl4fbt2+jTp49MqR7PzMwM3bp1kzsGkU7avHmz3BHKYSFEpABDhgzBzJkzkZiYWOEMLCVuVxEWFlbuWGlpKSZPnoxWrVrJkIiIahOlrKLPS2NECqCnV/ki77VtsPSFCxfw8ssvIzMzU+4oRKQwqampmDp1Kg4ePIj79+9Lx+WcGMIeISIFePRbUW2WkpKCBw8eyB2DiBRozJgxAP4eQ6iUiSEshIhk9uDBAxgaGiIhIQHOzs5yx3li/v7+WvfLZn/s3btXthViiUjZlLiKPgshIpnVq1cPtra2teryFwCcOnVK637Z7I/AwMDHzigjIt2kxFX0OUaISAE2b96M7777DiEhIWjcuLHccYiIngklrqLPQohIATp37ozLly+juLgYtra2MDY21jp/8uRJmZJVrqCgAEIINGjQAABw9epVhIWFwcnJSbb1QIhI2ZS4ij4vjREpwPDhw+WOUG3Dhg3DyJEj8dZbb+H27dt4/vnnYWBggD///BNBQUF4++235Y5IRAqjxFX02SNERE/F3Nwchw4dQocOHbBx40asXbsWp06dwq5du/DBBx8gOTlZ7ohEpDBKXEWfPUJEChIfH4/k5GSoVCo4OTmhc+fOckeq1L1792BiYgIAiIiIwMiRI6Gnpwc3NzdcvXpV5nREpERKXEWfhRCRAmRnZ+O1117DwYMH0ahRIwghkJubC3d3d4SGhqJp06ZyRyzHwcEBP/zwA0aMGIHffvsNM2fOBPD3a5FjdVgiUj4lrqLPS2NECjB69GikpKRg69ataN++PQDg3LlzGDduHBwcHLBjxw6ZE5b3/fffw8vLCyUlJejbty8iIiIAAMuWLcPhw4fx66+/ypyQiJRGiavosxAiUgCNRoN9+/aV2ww0NjYWHh4euH37tjzBHiMrKwuZmZno1KmT9AEXGxsLU1NTtGvXTuZ0RESPx0tjRApQWlparosYAOrXr6/o7TesrKxgZWWldez555+XKQ0RUfWxR4hIAYYNG4bbt29jx44dsLa2BgD88ccfGDNmDMzMzCrc6V1u+fn5WL58OaKiopCdnV2uYLty5YpMyYhIyWJjY3Hw4MEKPzeCgoJqPA97hIgUYN26dRg2bBjs7OxgY2MDlUqF9PR0uLi4ICQkRO54FZo4cSIOHToEb29vNGvWTBHrgRCRsi1duhTvv/8+HB0dy60jJNdnCHuEiBQkMjIS58+fhxACTk5O6Nevn9yRKtWoUSPs3bsXvXr1kjsKEdUSlpaW+Pjjj+Hj4yN3FAl7hIhk0rhxY1y8eBHm5uYYP3481qxZg/79+6N///5yR3siZmZm3BeNiKpFT09PcV+eKp/HRkTPVFFREfLy8gAAW7Zswf3792VOVD0ffvghPvjgA9y7d0/uKERUS8ycOROfffaZ3DG08NIYkUz69++PGzduoGvXrtiyZQtGjx4NIyOjCtt+/fXXNZzu8Tp37oyUlBQIIWBnZ1du1psSN4olInmVlpbC09MTFy9ehJOTU7nPjd27d9d4Jl4aI5JJSEgIVq1ahZSUFKhUKuTm5taqXqHauFEsEclr2rRpOHDgANzd3dGkSRNFTLJgjxCRAtjb2+PEiRNo0qSJ3FGIiJ4ZExMThIaGwtPTU+4oEvYIESlAamqq3BGeWm3aKJaI5NW4cWO0bt1a7hha2CNEpBBRUVGVLk6oxDFCtXGjWCKS1+bNmxEeHo7NmzejQYMGcscBwEKISBEWLVqExYsXw9XVtcLFCZW4snRt3CiWiOSlxEkWLISIFKBZs2ZYsWIFvL295Y7yxGrrRrFEJJ9FixZVeX7BggU1lOR/OEaISAGKiorQs2dPuWNUS23dKJaI5CNHofM47BEiUoDZs2ejYcOGmD9/vtxRnlht3CiWiJRBSZMs2CNEpAD379/HV199hX379qFjx47lelrk2JH5cWrjRrFEJC8lTrJgjxCRAri7u1d6TqVSYf/+/TWYpnpq00axRCQvJU6yYCFERERENUKJkyy46SoRVcv+/fvh5OQkbRj7sNzcXHTo0AG///67DMmISOmUOMmCPUJEMho5cuQTtZNjI8LKDB06FO7u7pg5c2aF5z/99FMcOHCAg6WJqBwlTrJgjxCRjDQazRPdlOT06dMYOHBgpec9PDwQHx9fg4mIqLZYt24d7ty5Azs7O7Ru3RoODg6wt7fHnTt3sHbtWlkysUeIiKrF0NAQSUlJcHBwqPD85cuX4eLigoKCghpORkS1hZImWXD6PBFVS/PmzZGYmFhpIXTmzBk0a9ashlMRUW3Sv39/9O/fX+4YAHhpjIiq6ZVXXsEHH3yA+/fvlztXUFCABQsWYPDgwTIkIyKlUvIkC14aI6JquXHjBrp06QJ9fX1MnToVjo6OUKlUSE5OxmeffYaSkhKcPHkSlpaWckclIoVQ8iQLFkJEVG1Xr17F22+/jd9++w1lHyEqlQoDBgzA559/Djs7O3kDEpGi2NraIjw8XFpE8VHnz5+Hh4cH0tPTazgZxwgR0VOwtbXFL7/8gpycHFy+fBlCCLRp0wZmZmZyRyMiBbpx40aF6weVqVevHm7evFmDiR56blmelYjqBDMzs3IrxBIRPUrJkyw4WJqIiIieKSVPsuAYISIiInqmlDzJgoUQERERPXNKnWTBQoiIiIhqjNImWbAQIiIiIp3FwdJERESks1gIERERkc5iIUREREQ6i4UQERER6SwWQkREABYuXIjnnntO7hhEVMNYCBER/YuKi4vljkBE1cBCiIhqle+//x4uLi4wMjJCkyZN0K9fP+Tn5wMANm/ejPbt28PQ0BDt2rXD559/rvWz165dw2uvvYbGjRvD2NgYrq6uOH78OIKDg7Fo0SKcPn0aKpUKKpUKwcHBAID09HQMGzYMDRs2hKmpKUaNGoUbN25Ij1nWk/T111+jVatWUKvV4KokRLUHN10lolojMzMTr7/+OlasWIERI0bgzp07+P333yGEwIYNG7BgwQKsW7cOnTt3xqlTp+Dr6wtjY2OMGzcOd+/eRe/evdG8eXPs2bMHVlZWOHnyJEpLSzF69GgkJSUhPDwc+/btAwBoNBoIITB8+HAYGxvj0KFDePDgASZPnozRo0fj4MGDUq7Lly/j22+/xa5du6Cvry/Tu0NET4OFEBHVGpmZmXjw4AFGjhwJW1tbAICLiwsA4MMPP0RgYCBGjhwJALC3t8e5c+fw5ZdfYty4cdi+fTtu3ryJuLg4NG7cGAC0dsJu2LAh6tWrBysrK+lYZGQkzpw5g9TUVNjY2AAAtm7dig4dOiAuLg7dunUDABQVFWHr1q1o2rTps38TiOhfxUKIiGqNTp06oW/fvnBxccGAAQPg4eGB//znP3jw4AEyMjIwYcIE+Pr6Su0fPHgAjUYDAEhISEDnzp2lIuhJJCcnw8bGRiqCAMDJyQmNGjVCcnKyVAjZ2tqyCCKqpVgIEVGtoa+vj8jISBw9ehQRERFYu3Yt5s2bh59++gkAsGHDBnTv3r3czwCAkZFRtZ9PCAGVSvXY48bGxtV+bCJSBg6WJqJaRaVSoVevXli0aBFOnToFAwMDHDlyBM2bN8eVK1fg4OCgdbO3twcAdOzYEQkJCfjrr78qfFwDAwOUlJRoHXNyckJ6ejoyMjKkY+fOnUNubi7at2//7F4kEdUY9ggRUa1x/PhxREVFwcPDAxYWFjh+/Dhu3ryJ9u3bY+HChfDz84OpqSkGDRqEwsJCnDhxAjk5OfD398frr7+OpUuXYvjw4Vi2bBmaNWuGU6dOwdraGj169ICdnR1SU1ORkJCAFi1awMTEBP369UPHjh0xZswYrF69Whos3bt3b7i6usr9dhDRv4A9QkRUa5iamuLw4cN45ZVX0LZtW7z//vsIDAzEoEGDMHHiRGzcuBHBwcFwcXFB7969ERwcLPUIGRgYICIiAhYWFnjllVfg4uKC5cv/Xzt3bMIwEINhVDeCCy9wgxgOXLj3UtnkcHcbJl0mCKT43xtB1YcEen1PZ/d913VdNcaofd9rzlmttVpr1bZtdRxHnedZvfd6nuefYwB+qL09vAAAQtkIAQCxhBAAEEsIAQCxhBAAEEsIAQCxhBAAEEsIAQCxhBAAEEsIAQCxhBAAEEsIAQCxhBAAEOsDEwhEDZDDDrAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "df['sector'].value_counts().plot(kind = 'bar')" ] @@ -132,9 +757,427 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
OneHotEncoder()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "OneHotEncoder()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from sklearn.preprocessing import OneHotEncoder\n", "onehot = OneHotEncoder()\n", @@ -143,9 +1186,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " ...,\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.],\n", + " [0., 0., 0., ..., 0., 0., 0.]])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "sector_enc = onehot.transform(df[['sector']])\n", "sector_enc.toarray()" @@ -168,7 +1228,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -181,9 +1241,433 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore')),\n",
+       "                ('knn',\n",
+       "                 DecisionTreeClassifier(criterion='entropy', max_depth=3))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore')),\n", + " ('knn',\n", + " DecisionTreeClassifier(criterion='entropy', max_depth=3))])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pipe1 = Pipeline(\n", " [\n", @@ -197,9 +1681,433 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore')),\n",
+       "                ('knn',\n",
+       "                 DecisionTreeClassifier(criterion='entropy', max_depth=3))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], + "text/plain": [ + "Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore')),\n", + " ('knn',\n", + " DecisionTreeClassifier(criterion='entropy', max_depth=3))])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "X0 = df[['sector']]\n", "Y0 = df['target']\n", @@ -210,7 +2118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -220,7 +2128,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -230,9 +2138,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'accuracy_score_train': 0.5119228438717438,\n", + " 'accuracy_score_test': 0.5113911787691189,\n", + " 'cohen_kappa_train': 0.0,\n", + " 'cohen_kappa_test': 0.0,\n", + " 'log_loss_train': 0.6928461137803972,\n", + " 'log_loss_test': 0.6928758971552175,\n", + " 'f1_score_train': 0.6771811748816596,\n", + " 'f1_score_test': 0.676715844253633}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "res = {\n", " 'accuracy_score_train': accuracy_score(Y0_train, Y_pred_train),\n", @@ -267,7 +2193,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -276,7 +2202,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -297,7 +2223,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -386,7 +2312,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +2337,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -426,9 +2352,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'log_loss_train': 0.692293492470195,\n", + " 'log_loss_test': 0.6924102214658684,\n", + " 'cohen_kappa_train': 0.018568204793696252,\n", + " 'cohen_kappa_test': 0.015454437406455135,\n", + " 'f1_score_train': 0.6257843468213725,\n", + " 'f1_score_test': 0.6244894693264126,\n", + " 'accuracy_score_train': 0.5159395236712562,\n", + " 'accuracy_score_test': 0.5140881528066014}" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Evaluate hyperparameter configuration 2\n", "pipe_d3 = pipe.set_params(**{'decisiontree__max_depth': 3})\n", @@ -438,9 +2382,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "{'log_loss_train': 0.6887529288669105,\n", + " 'log_loss_test': 0.7544098738491859,\n", + " 'cohen_kappa_train': 0.027547393862800473,\n", + " 'cohen_kappa_test': 0.014243731538251203,\n", + " 'f1_score_train': 0.6478284801018614,\n", + " 'f1_score_test': 0.642686248924363,\n", + " 'accuracy_score_train': 0.5218705615691253,\n", + " 'accuracy_score_test': 0.514923223056042}" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Evaluate hyperparameter configuration 2\n", "pipe_d15 = pipe.set_params(**{'decisiontree__max_depth':15})\n", @@ -497,7 +2459,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -515,18 +2477,366 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fit_timescore_timetest_accuracytrain_accuracytest_f1train_f1test_precisiontrain_precisiontest_recalltrain_recalltest_roc_auctrain_roc_auctest_neg_log_losstrain_neg_log_losstest_neg_brier_scoretrain_neg_brier_score
020.3238821.0624430.5141640.5203870.6332650.6429730.5159790.5193640.8195560.8438000.5131940.524244-0.757911-0.689198-0.250998-0.248362
121.8940171.1030010.5142360.5211260.6337610.6382980.5159920.5202820.8211850.8255620.5120130.525087-0.826486-0.689107-0.251993-0.248325
222.8493931.0740770.5148830.5214070.6412190.6442720.5158860.5199280.8469920.8467840.5106490.525496-0.853786-0.688600-0.252847-0.248141
321.0552601.0365050.5145070.5214140.6387450.6428470.5158180.5200620.8385940.8415280.5137980.525427-0.735036-0.689149-0.250659-0.248321
4-0.6206051.0675720.5137690.5215410.6316100.6416670.5158320.5202550.8144020.8369960.5122350.525106-0.769125-0.689139-0.251287-0.248325
\n", + "
" + ], + "text/plain": [ + " fit_time score_time test_accuracy train_accuracy test_f1 train_f1 \\\n", + "0 20.323882 1.062443 0.514164 0.520387 0.633265 0.642973 \n", + "1 21.894017 1.103001 0.514236 0.521126 0.633761 0.638298 \n", + "2 22.849393 1.074077 0.514883 0.521407 0.641219 0.644272 \n", + "3 21.055260 1.036505 0.514507 0.521414 0.638745 0.642847 \n", + "4 -0.620605 1.067572 0.513769 0.521541 0.631610 0.641667 \n", + "\n", + " test_precision train_precision test_recall train_recall test_roc_auc \\\n", + "0 0.515979 0.519364 0.819556 0.843800 0.513194 \n", + "1 0.515992 0.520282 0.821185 0.825562 0.512013 \n", + "2 0.515886 0.519928 0.846992 0.846784 0.510649 \n", + "3 0.515818 0.520062 0.838594 0.841528 0.513798 \n", + "4 0.515832 0.520255 0.814402 0.836996 0.512235 \n", + "\n", + " train_roc_auc test_neg_log_loss train_neg_log_loss test_neg_brier_score \\\n", + "0 0.524244 -0.757911 -0.689198 -0.250998 \n", + "1 0.525087 -0.826486 -0.689107 -0.251993 \n", + "2 0.525496 -0.853786 -0.688600 -0.252847 \n", + "3 0.525427 -0.735036 -0.689149 -0.250659 \n", + "4 0.525106 -0.769125 -0.689139 -0.251287 \n", + "\n", + " train_neg_brier_score \n", + "0 -0.248362 \n", + "1 -0.248325 \n", + "2 -0.248141 \n", + "3 -0.248321 \n", + "4 -0.248325 " + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pd.DataFrame(d3_dict)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fit_timescore_timetest_accuracytrain_accuracytest_f1train_f1test_precisiontrain_precisiontest_recalltrain_recalltest_roc_auctrain_roc_auctest_neg_log_losstrain_neg_log_losstest_neg_brier_scoretrain_neg_brier_score
020.9393481.0484070.5141610.5203780.6332480.6429620.5159780.5193590.8195040.8437740.5131960.524226-0.758860-0.689209-0.250993-0.248366
121.9385651.0766860.5142180.5211340.6337900.6383030.5159780.5202870.8213190.8255660.5119750.525104-0.827558-0.689099-0.252012-0.248322
222.7276271.0500800.5148740.5214020.6412040.6442610.5158820.5199260.8469530.8467540.5106310.525487-0.854158-0.688607-0.252851-0.248144
343.371215-21.1345200.5144960.5214100.6387410.6428440.5158110.5200600.8385970.8415250.5137580.525439-0.735040-0.689151-0.250660-0.248321
421.4536951.0365860.5137650.5215320.6316110.6416720.5158290.5202490.8144130.8370320.5122350.525088-0.768537-0.689141-0.251269-0.248326
\n", + "
" + ], + "text/plain": [ + " fit_time score_time test_accuracy train_accuracy test_f1 train_f1 \\\n", + "0 20.939348 1.048407 0.514161 0.520378 0.633248 0.642962 \n", + "1 21.938565 1.076686 0.514218 0.521134 0.633790 0.638303 \n", + "2 22.727627 1.050080 0.514874 0.521402 0.641204 0.644261 \n", + "3 43.371215 -21.134520 0.514496 0.521410 0.638741 0.642844 \n", + "4 21.453695 1.036586 0.513765 0.521532 0.631611 0.641672 \n", + "\n", + " test_precision train_precision test_recall train_recall test_roc_auc \\\n", + "0 0.515978 0.519359 0.819504 0.843774 0.513196 \n", + "1 0.515978 0.520287 0.821319 0.825566 0.511975 \n", + "2 0.515882 0.519926 0.846953 0.846754 0.510631 \n", + "3 0.515811 0.520060 0.838597 0.841525 0.513758 \n", + "4 0.515829 0.520249 0.814413 0.837032 0.512235 \n", + "\n", + " train_roc_auc test_neg_log_loss train_neg_log_loss test_neg_brier_score \\\n", + "0 0.524226 -0.758860 -0.689209 -0.250993 \n", + "1 0.525104 -0.827558 -0.689099 -0.252012 \n", + "2 0.525487 -0.854158 -0.688607 -0.252851 \n", + "3 0.525439 -0.735040 -0.689151 -0.250660 \n", + "4 0.525088 -0.768537 -0.689141 -0.251269 \n", + "\n", + " train_neg_brier_score \n", + "0 -0.248366 \n", + "1 -0.248322 \n", + "2 -0.248144 \n", + "3 -0.248321 \n", + "4 -0.248326 " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "d15_dict = cross_validate(pipe_d15, X, Y, cv=5, scoring = scoring, return_train_score = True)\n", "pd.DataFrame(d15_dict)" @@ -545,9 +2855,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "fit_time 26.086090\n", + "score_time -3.384552\n", + "test_accuracy 0.514303\n", + "train_accuracy 0.521171\n", + "test_f1 0.635719\n", + "train_f1 0.642009\n", + "test_precision 0.515896\n", + "train_precision 0.519976\n", + "test_recall 0.828157\n", + "train_recall 0.838930\n", + "test_roc_auc 0.512359\n", + "train_roc_auc 0.525069\n", + "test_neg_log_loss -0.788831\n", + "train_neg_log_loss -0.689042\n", + "test_neg_brier_score -0.251557\n", + "train_neg_brier_score -0.248296\n", + "dtype: float64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pd.DataFrame(d15_dict).mean()" ] @@ -555,7 +2892,7 @@ ], "metadata": { "kernelspec": { - "display_name": "env", + "display_name": "dsi_participant", "language": "python", "name": "python3" }, @@ -569,7 +2906,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.3" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/02_activities/assignments/assignment_1.ipynb b/02_activities/assignments/assignment_1.ipynb index 0825486c4..0e787b5c7 100644 --- a/02_activities/assignments/assignment_1.ipynb +++ b/02_activities/assignments/assignment_1.ipynb @@ -26,19 +26,67 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "../../05_src/data/prices/\n" + ] + } + ], "source": [ "# Write your code below.\n", - "\n" + "\n", + "# Import dotenv\n", + "from dotenv import load_dotenv\n", + "import os\n", + "\n", + "# Load the environment variables\n", + "load_dotenv()\n", + "price_data_dir = os.getenv(\"PRICE_DATA\")\n", + "\n", + "# Check if PRICE_DATA loaded correctly from dotenv\n", + "print(price_data_dir) # Should output the path to PRICE_DATA" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_56322/676544213.py:1: DeprecationWarning: The current Dask DataFrame implementation is deprecated. \n", + "In a future release, Dask DataFrame will use new implementation that\n", + "contains several improvements including a logical query planning.\n", + "The user-facing DataFrame API will remain unchanged.\n", + "\n", + "The new implementation is already available and can be enabled by\n", + "installing the dask-expr library:\n", + "\n", + " $ pip install dask-expr\n", + "\n", + "and turning the query planning option on:\n", + "\n", + " >>> import dask\n", + " >>> dask.config.set({'dataframe.query-planning': True})\n", + " >>> import dask.dataframe as dd\n", + "\n", + "API documentation for the new implementation is available at\n", + "https://docs.dask.org/en/stable/dask-expr-api.html\n", + "\n", + "Any feedback can be reported on the Dask issue tracker\n", + "https://github.com/dask/dask/issues \n", + "\n", + " import dask.dataframe as dd\n" + ] + } + ], "source": [ "import dask.dataframe as dd" ] @@ -57,13 +105,170 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Loaded columns: Index(['Date', 'Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume', 'sector',\n", + " 'subsector', 'year'],\n", + " dtype='object')\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateOpenHighLowCloseAdj CloseVolumesectorsubsectoryear
ticker
A2000-01-0356.33047156.46459248.19384851.50214843.4630244674353Health CareLife Sciences Tools & Services2000
A2000-01-0448.73032849.26681146.31616647.56795540.1429334765083Health CareLife Sciences Tools & Services2000
A2000-01-0547.38912647.56795543.14199144.61731037.6528705758642Health CareLife Sciences Tools & Services2000
A2000-01-0644.08083044.34907241.57725142.91845336.2191852534434Health CareLife Sciences Tools & Services2000
A2000-01-0742.24785247.16559242.20314846.49499139.2374532819626Health CareLife Sciences Tools & Services2000
\n", + "
" + ], + "text/plain": [ + " Date Open High Low Close Adj Close \\\n", + "ticker \n", + "A 2000-01-03 56.330471 56.464592 48.193848 51.502148 43.463024 \n", + "A 2000-01-04 48.730328 49.266811 46.316166 47.567955 40.142933 \n", + "A 2000-01-05 47.389126 47.567955 43.141991 44.617310 37.652870 \n", + "A 2000-01-06 44.080830 44.349072 41.577251 42.918453 36.219185 \n", + "A 2000-01-07 42.247852 47.165592 42.203148 46.494991 39.237453 \n", + "\n", + " Volume sector subsector year \n", + "ticker \n", + "A 4674353 Health Care Life Sciences Tools & Services 2000 \n", + "A 4765083 Health Care Life Sciences Tools & Services 2000 \n", + "A 5758642 Health Care Life Sciences Tools & Services 2000 \n", + "A 2534434 Health Care Life Sciences Tools & Services 2000 \n", + "A 2819626 Health Care Life Sciences Tools & Services 2000 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "import os\n", "from glob import glob\n", "\n", "# Write your code below.\n", - "\n" + "\n", + "# Step 1: Load all parquet files into a single DataFrame\n", + "parquet_files = glob(os.path.join(price_data_dir, \"**\", \"*.parquet\"), recursive=True)\n", + "parquet_files = [f for f in parquet_files if os.path.isfile(f)]\n", + "\n", + "# Load data without transformations, just to verify structure\n", + "df = dd.read_parquet(parquet_files, engine=\"pyarrow\")\n", + "\n", + "# Step 2: Verify loaded columns and initial rows\n", + "print(\"Loaded columns:\", df.columns)\n", + "df.head()" ] }, { @@ -88,11 +293,224188 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:13: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + "/tmp/ipykernel_56322/421061092.py:14: UserWarning: `meta` is not specified, inferred from partial data. Please provide `meta` if the result is unexpected.\n", + " Before: .shift(1)\n", + " After: .shift(1, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n", + " or: .shift(1, meta=('x', 'f8')) for series result\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + "Exception ignored in: >\n", + "Traceback (most recent call last):\n", + " File \"/home/alex8642/miniconda3/envs/dsi_participant/lib/python3.9/site-packages/ipykernel/ipkernel.py\", line 775, in _clean_thread_parent_frames\n", + " def _clean_thread_parent_frames(\n", + "KeyboardInterrupt: \n" + ] + } + ], "source": [ "# Write your code below.\n", + "\n", + "# List to hold each individual processed DataFrame\n", + "processed_dfs = []\n", + "\n", + "# Loop through each parquet file and process individually\n", + "parquet_files = glob(os.path.join(price_data_dir, \"**\", \"*.parquet\"), recursive=True)\n", + "for file in parquet_files:\n", + " # Load each file individually\n", + " df = dd.read_parquet(file, engine=\"pyarrow\")\n", + " \n", + " # Perform groupby operations within each file, without any cross-file duplicates\n", + " df['Close_lag'] = df.groupby(\"ticker\")['Close'].shift(1)\n", + " df['Adj_Close_lag'] = df.groupby(\"ticker\")['Adj Close'].shift(1)\n", + " df['returns'] = (df['Adj Close'] / df['Adj_Close_lag']) - 1\n", + " df['hi_lo_range'] = df['High'] - df['Low']\n", + " \n", + " # Append the processed DataFrame to the list\n", + " processed_dfs.append(df)\n", + "\n", + "# Concatenate all processed DataFrames into a single Dask DataFrame\n", + "dd_feat = dd.concat(processed_dfs)\n", + "\n", + "# Verify the result\n", + "dd_feat.head()\n", + "\n", "\n" ] }, @@ -166,7 +224548,7 @@ ], "metadata": { "kernelspec": { - "display_name": "env", + "display_name": "dsi_participant", "language": "python", "name": "python3" }, @@ -180,7 +224562,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.0" + "version": "3.9.18" } }, "nbformat": 4,